Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae

Abstract

Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage1. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape2. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated3. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly4 slow rotation of most white dwarf stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Internal rotation rate of our model 3.0M asymptotic-giant-branch star as a function of radius near the base of the convection zone.

Similar content being viewed by others

References

  1. Kwok, S., Purton, C. R. & Fitzgerald, P. M. On the origin of planetary nebulae. Astrophys. J. 219, L125–L127 (1978).

    Article  ADS  Google Scholar 

  2. Manchado, A., Villaver, E., Stanghellini, L. & Guerrero, M. in Asymmetrical Planetary Nebulae II. From Origins to Microstructures (eds Kastner, J. H., Stoker, N. & Rappaport, S.) 17–23 (ASP Conf. Ser. 199, Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  3. Soker, N. & Harpaz, A. Can a single AGB star form an axially symmetric planetary nebula? J. Astron. Soc. Pac. 104, 923–930 (1992).

    Article  ADS  Google Scholar 

  4. Koester, D., Dreizler, S., Weidemann, V. & Allard, N. F. Search for rotation in white dwarfs. Astron. Astrophys. 338, 612–622 (1998).

    ADS  Google Scholar 

  5. Balick, B. The evolution of planetary nebulae. I—Structures, ionizations, and morphological sequences. Astron. J. 94, 671–678 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Soker, N. & Livio, M. Interacting winds and the shaping of planetary nebulae. Astrophys. J. 339, 268–278 (1989).

    Article  ADS  Google Scholar 

  7. Mellema, G., Eulderink, F. & Icke, V. Hydrodynamical models of aspherical planetary nebulae. Astron. Astrophys. 252, 718–732 (1991).

    ADS  Google Scholar 

  8. Icke, V., Balick, B. & Frank, A. The hydrodynamics of aspherical planetary nebulae. II. Numerical modelling of the early evolution. Astron. Astrophys. 253, 224–243 (1992).

    ADS  MATH  Google Scholar 

  9. Gurzadyan, G. Planetary Nebulae (Gordon and Breach, New York, 1969).

    Google Scholar 

  10. Pascoli, G. La nature des nébuleuses planétaires bipolaires. Astron. Astrophys. 180, 191–200 (1987).

    ADS  CAS  Google Scholar 

  11. Matt, S., Balick, B., Winglee, R. & Goodson, A. Disk formation by asymptotic giant branch winds in dipole magnetic fields. Astrophys. J. 545, 965–973 (2000).

    Article  ADS  Google Scholar 

  12. Chevalier, R. A. & Luo, D. Magnetic shaping of planetary nebulae and other stellar wind bubbles. Astrophys. J. 421, 225–235 (1994).

    Article  ADS  Google Scholar 

  13. García-Segura, G., Langer, N., Rozyczka, M. & Franco, J. Shaping bipolar and elliptical planetary nebulae: effects of stellar rotation, photoionization beating, and magnetic fields. Astrophys. J. 517, 767–781 (1999).

    Article  ADS  Google Scholar 

  14. Blackman, E. G., Frank, A. & Welch, C. MHD stellar and disk winds: Application to planetary nebulae. Astrophys. J. (in the press).

  15. Cox, A. N. Allen's Astrophysical Quantities 4th edn, 389 (AIP Press, New York, 1999).

    Google Scholar 

  16. Peterson, R. C. The rotation of horizontal-branch stars. II. Members of the globular clusters M3, M5, and M13. Astrophys. J. 275, 737–751 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Pinsonneault, M., Deliyannis, C. P. & Demarque, P. Evolutionary models of halo stars with rotation. I. Evidence for differential rotation with depth in stars. Astrophys. J. 367, 239–252 (1991).

    Article  ADS  Google Scholar 

  18. Behr, B. B. et al. A new spin on the problem of horizontal-branch gaps: stellar rotation along the blue horizontal branch of globular cluster M13. Astrophys. J. 528, 849–853 (2000).

    Article  ADS  Google Scholar 

  19. Livio, M. & Pringle, J. E. The rotation rates of white dwarfs and pulsars. Astrophys. J. 505, 339–343 (1998).

    Article  ADS  Google Scholar 

  20. Thomas, J. H., Markiel, J. A. & Van Horn, H. M. Dynamo generation of magnetic fields in white dwarfs. Astrophys. J. 453, 403–410 (1995).

    Article  ADS  Google Scholar 

  21. Parker, E. N. A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707–719 (1993).

    Article  ADS  Google Scholar 

  22. Markiel, J. A. & Thomas, J. H. Solar interface dynamo models with a realistic rotation profile. Astrophys. J. 523, 827–837 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Blackman, E. G. Overcoming the back reaction on turbulent motions in the presence of magnetic fields. Phys. Rev. Lett. 77, 2694–2697 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Pick, M. in Ninth European Meeting on Solar Physics: Magnetic Fields and Solar Processes (ed. Wilson, A.) 183 (ESA SP Series SP-448, European Space Agency, 1999).

    Google Scholar 

  25. Trammell, S. R. in Asymmetrical Planetary Nebulae II. From Origins to Microstructures (eds Kastner, J. H., Soker, N. & Rappaport, S.) 147–150 (ASP Conf. Ser. 199, Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  26. Sahai, J. in Asymmetrical Planetary Nebulae II. From origins to Microstructures (eds Kastner, J. H., Soker, N. & Rappaport, S.) 209–216 (ASP Conf. Ser. 199, Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  27. Alcolea, J. et al. in Asymmetrical Planetary Nebulae II. From Origins to Microstructures (eds Kastner, J. H., Soker, N. & Rappaport, S.) 347–354 (ASP Conf. Ser. 199, Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  28. Königl, A. & Pudritz, R. in Protostars and Planets IV (eds Mannings, V., Boss, V. A. & Russel, S.) 759–791 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  29. Tsinganos, K. & Bogovalov, S. Magnetic collimation of solar and stellar winds. Astron. Astrophys. 356, 989–1002 (2000).

    ADS  Google Scholar 

  30. Lery, T., Heyvaerts, J., Appl, S. & Norman, C. Outflows from magnetic rotators. Astron. Astrophys. 337, 603–624 (1998).

    ADS  Google Scholar 

  31. Balick, B. et al. FLIERs and other microstructures in planetary nebulae. IV. Images of elliptical PNs from the Hubble Space Telescope. Astron. J. 116, 360–371 (1999).

    Article  ADS  Google Scholar 

  32. Palen, S. & Fix, J. D. Models of OH maser variations in U Herculis. Astrophys. J. 531, 391–400 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Kawaler and to F. D'Antona and P. Ventura for making available to us detailed tables of their evolutionary models for AGB stars. This work was supported by the NSF, NASA and the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackman, E., Frank, A., Markiel, J. et al. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature 409, 485–487 (2001). https://doi.org/10.1038/35054008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing