Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The architecture of active zone material at the frog's neuromuscular junction

Abstract

Active zone material at the nervous system's synapses is situated next to synaptic vesicles that are docked at the presynaptic plasma membrane, and calcium channels that are anchored in the membrane. Here we use electron microscope tomography to show the arrangement and associations of structural components of this compact organelle at a model synapse, the frog's neuromuscular junction. Our findings indicate that the active zone material helps to dock the vesicles and anchor the channels, and that its architecture provides both a particular spatial relationship and a structural linkage between them. The structural linkage may include proteins that mediate the calcium-triggered exocytosis of neurotransmitter by the synaptic vesicles during synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-dimensional and three-dimensional (2D and 3D, respectively) overviews.
Figure 2: Sites of connections between components of AZM and docked vesicles.
Figure 3: Distribution and associations of ribs and beams.
Figure 4: Arrangement and relationships of pegs.
Figure 5

Similar content being viewed by others

References

  1. Peters, A., Palay, S. L. & Webster, H. de F. The Fine Structure of the Nervous System 198–203 (Oxford, Oxford, 1991).

    Google Scholar 

  2. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, 1969).

    Google Scholar 

  3. Couteaux, R. & Pécot-Dechavassine, M. Vésicules synaptiques et poches au niveau des “zones actives” de la jonction neuromusculaire. Compt. Rend. 271, 2346– 2349 (1970).

    CAS  Google Scholar 

  4. Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981).

    Article  CAS  Google Scholar 

  5. Palay, S. L. Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2 (Suppl.), 193–202 ( 1956).

    Article  Google Scholar 

  6. Gray, E. G. Electron microscopy of presynaptic organelles of the spinal cord. J. Anat. 97, 101–106 ( 1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gray, E. G. Problems of interpreting the fine structure of vertebrate and invertebrate synapses. Int. Rev. Gen. Exp. Zool. 2, 139 –170 (1966).

    Article  Google Scholar 

  8. Heuser, J. E. & Reese, T. S. in Handbook of Physiology Vol. 1, 261–294 (American Physiological Society, Bethesda, 1977).

    Google Scholar 

  9. Frank, J. Electron Tomography: Three-Dimensional Imaging with the TEM (Plenum, New York, 1992).

    Book  Google Scholar 

  10. Radermacher, M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9, 359–394 (1988).

    Article  CAS  Google Scholar 

  11. Zhou, Z., Prasad, B., Jakana, J., Rixon, F. & Chiu, W. Protein subunit structures in the herpes simplex virus capsid from 400 kV spot-scan electron cryomicroscopy. J. Mol. Biol. 242 , 456–469 (1994).

    Article  CAS  Google Scholar 

  12. Zwickl, P. et al. Primary structure of the thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964–972 (1994).

    Article  Google Scholar 

  13. Moritz, M. et al. Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 130, 1149–1159 (1995).

    Article  CAS  Google Scholar 

  14. Hoenger, A. & Aebi, U. 3-D reconstructions from ice-embedded and negatively stained biomacromolecular assemblies: A critical comparison. J. Struct. Biol. 117, 99– 116 (1996).

    Article  Google Scholar 

  15. McEwen, B. F., Arena, J. T., Frank, J. & Rieder, C. L. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J. Cell Biol. 120, 301–312 (1993).

    Article  CAS  Google Scholar 

  16. Perkins, G. et al. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119, 260–272 (1997).

    Article  CAS  Google Scholar 

  17. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 ( 1999).

    Article  CAS  Google Scholar 

  18. Lenzi, D., Runyeon, J. W., Crum, J., Ellisman, M. H. & Roberts, W. M. Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J. Neurosci. 19, 119–132 (1999).

    Article  CAS  Google Scholar 

  19. Heuser, J. E., Reese, T. S. & Landis, D. M. D. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J. Neurocytol. 3, 109–131 (1974).

    Article  CAS  Google Scholar 

  20. Robitalle, R., Alder, E. M. & Charlton, M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5, 773–779 (1990).

    Article  Google Scholar 

  21. Stanley, E. F. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 20, 404– 409 (1997).

    Article  CAS  Google Scholar 

  22. Catterall, W. A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Neuron 24, 307–323 (1998).

    CAS  Google Scholar 

  23. McMahan, U. J. & Slater, C. R. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J. Cell Biol. 98, 1453–1473 (1984).

    Article  CAS  Google Scholar 

  24. Colledge, M. & Froehner, S. C. To muster a cluster: anchoring neurotransmitter receptors at synapses. Proc. Natl Acad. Sci. USA 95, 3341–3345 ( 1998).

    Article  ADS  CAS  Google Scholar 

  25. Robitaille, R., Garcia, M. L., Kaczorowski, G. J. & Charlton, M. P. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11, 645–655 (1993).

    Article  CAS  Google Scholar 

  26. Cohen, M. W., Hoffstrom, B. G. & DeSimone, D. W. Active zones on motor nerve terminals contain α3β1 integrin. J. Neurosci. 20, 4912– 4921 (2000).

    Article  CAS  Google Scholar 

  27. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    Article  CAS  Google Scholar 

  28. Hazuka, C. D., Foletti, D. L. & Scheller, R. H. in Neurotransmitter Release (ed. Bellen, H. J.) 81–125 (Oxford Univ. Press, 1999).

    Google Scholar 

  29. Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863– 911 (1999).

    Article  CAS  Google Scholar 

  30. Broadie, K., Bellen, H. K., DiAntonio, J., Littleton, J. T. & Schwarz, T. L. Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl Acad. Sci. USA 91, 10727–10731 (1994).

    Article  ADS  CAS  Google Scholar 

  31. Pfeffer, S. R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, E17–E22 ( 1999).

    Article  CAS  Google Scholar 

  32. Sunderland, W. J., Son, Y. -J., Miner, J. H., Sanes, J. R. & Carlson, S. S. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (α4β2γ1) with non-erythoid spectrin. J. Neurosci. 20, 1009–1019 (2000).

    Article  CAS  Google Scholar 

  33. Martin, P. T., Kaufman, S. J., Kamer, R. H. & Sanes, J. R. Synaptic integrins in developing, adult, and mutant muscle: selective association of α1, α7A, α7B integrins in the neuromuscular junction. Dev. Biol. 174, 125–139 (1996).

    Article  CAS  Google Scholar 

  34. Bewick, G. S., Young, C. & Slater, C. R. Spatial relationships of utrophin, dystrophin, β-dystroglycan, and β-spectrin to acetylcholine receptor clusters during postnatal maturation of the rat neuromuscular junction. J. Neurocytol. 25 , 367–369 (1996).

    CAS  PubMed  Google Scholar 

  35. Ress, D., Harlow, M., Schwarz, M., Marshall, R. M. & McMahan, U. J. Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography. J. Electron Microsc. 48, 277–287 ( 1999).

    Article  CAS  Google Scholar 

  36. Dierksen, K., Typke, D., Hegerl, R. & Baumeister, W. Towards automatic electron tomography. Ultramicroscopy 49, 109–120 (1992).

    Article  Google Scholar 

  37. Dierksen, K. et al. Three dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automatic electron tomography. J. Biophys. 68, 1416–1422 (1995).

    Article  CAS  Google Scholar 

  38. Braunfeld, M., Koster, A., Sedat, J. & Agard, D. Cryo automated electron tomography: towards high-resolution reconstructions of plastic-embedded structures. J. Microsc. 174, 75–84 (1994).

    Article  CAS  Google Scholar 

  39. Radermacher, M. in Electron Tomography: Three-Dimensional Imaging with the TEM (ed. Frank, J.) 91–115 (Plenum, New York, 1992).

    Book  Google Scholar 

  40. Stoschek, A. & Hegerl, R. Denoising of electron tomographic reconstructions using multiscale transformations. J. Struct. Biol. 120, 257–265 ( 1997).

    Article  CAS  Google Scholar 

  41. Wang, X. et al. Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J. Cell. Biol. 147, 151– 162 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to W. Baumeister and members of the Department of Structural Biology at the Max-Planck Institute for Biochemistry in Martinsried, Germany, for use of their CM 200 electron microscope; A. Koster participated in the data collection for MPI-9 and MPI-10. We are also grateful to D. Agard and members of his laboratory in the Department of Biochemistry and Biophysics at the University of California San Francisco for use of the Philips EM 430; M. Braunfeld participated in the data collection for UC-1. T. Schwarz at Harvard Medical School provided comments on the manuscript, and B. Colyear at Stanford University made the schematic illustrations. This work was supported by grants from the NIH and the Deutsche Forschungsgemeinschaft, and by the M. A. Antelman Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uel J. McMahan.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlow, M., Ress, D., Stoschek, A. et al. The architecture of active zone material at the frog's neuromuscular junction. Nature 409, 479–484 (2001). https://doi.org/10.1038/35054000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing