The neurobiology of attachment

Key Points


  • Humans are a “social animal” and it is our social attachments that we live for. Recent studies have begun to reveal the common neural mechanisms that underlie specific social attachments.

  • Apart from pharmacological studies in maternal monkeys and recent imaging studies in humans, most studies have so far been done in non-primate mammals.

  • Infant–mother attachment. Studies in chick show that during imprinting — when a chick develops an enduring selectivity for following its mother — a long-term memory is formed, entailing changes in the postsynaptic structure of specific cortical regions of the brain. By contrast, rat pups develop maternal recognition through olfactory learning. At this time, no specific cortical region of the pup brain has been identified as important.

  • Maternal–infant attachment. In the rat, many of the same neuroendocrine factors — oestrogen and progesterone — that are associated with pregnancy and lactation are also critical for the onset of maternal behaviour. The neuropeptides prolactin and oxytocin also have a central role. The effects of oxtocin might be mediated through the ventral tegmental area and the medial preoptic area.

  • Olfactory learning. In sheep, selective maternal behaviour can be instigated by vaginocervical stimulation, which stimulates the release of oxytocin. Furthermore, injection of oxytocin into the paraventricular nucleus of the hypothalamus can induce maternal acceptance of the lamb. The maternal ewe's identification of her lamb is accompanied by a robust increase in extracellular concentrations of glutamate and GABA within the olfactory bulb and a reorganization of synapses.

  • Adult–adult pair bond formation. In monogamous prairie voles, oxytocin and vasopressin seem to be necessary and sufficient for pair-bond formation. Neither peptide has a notable effect in the non-monogamous montane vole. Differences in behaviour might be due to differences in the expression patterns of the receptors for these factors. Differences in the promoter regions of these receptor genes have been implictaed in these species differences in receptor distribution and behaviour.


It is difficult to think of any behavioural process that is more intrinsically important to us than attachment. Feeding, sleeping and locomotion are all necessary for survival, but humans are, as Baruch Spinoza famously noted, “a social animal” and it is our social attachments that we live for. Over the past decade, studies in a range of vertebrates, including humans, have begun to address the neural basis of attachment at a molecular, cellular and systems level. This review describes some of the important insights from this work.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Oxytocin and maternal behaviour in the sheep brain.
Figure 2: Oxytocin and social attachment in the monogamous prairie vole female.
Figure 3: Vasopressin V1a receptor and attachment in prairie vole male.


  1. 1

    Harlow, H. & Suomi, S. The nature of love — Simplified . Amer. Psychol. 25, 161– 168 (1970). PubMed

    CAS  Google Scholar 

  2. 2

    de Bono, M. & Bargmann, C. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans . Cell 94, 679–689 (1998).

    CAS  Google Scholar 

  3. 3

    Bowlby, J. Attachment and Loss: Attachment 2nd edn Vol. 1 (Basic Books, New York, 1982).

    Google Scholar 

  4. 4

    Snowdon, C. in Contemporary Issues in Comparative Psychology (ed. Dewsbury, D.) 225–251 (Sinauer, Sunderland, Massachusetts, 1990).

    Google Scholar 

  5. 5

    Mendoza, S. & Mason, W. Contrasting responses to intruders and involuntary separation by monogamous and polygynous New World monkeys . Physiol. Behav. 38, 795– 801 (1986).

    CAS  Google Scholar 

  6. 6

    Martel, F. L., Nevison, C. M., Rayment, F. D., Simpson, M. J. & Keverne, E. B. Opioid receptor blockade reduces maternal affect and social grooming in rhesus monkeys. Psychoneuroendocrinology 18, 307–321 ( 1993).

    CAS  Google Scholar 

  7. 7

    Bartels, A. & Zeki, S. The neural basis of romantic love. NeuroReport 11, 3829–3834 (2000).

    CAS  Google Scholar 

  8. 8

    Lorberbaum, J. et al. Feasibility of using fMRI to study mothers responding to infant cries. Depression and Anxiety 10, 99– 104 (1999).

    CAS  Google Scholar 

  9. 9

    Bolhuis, J. & Honey, R. Imprinting, learning and development: from behaviour to brain and back. Trends Neurosci. 21, 306–311 (1998).

    CAS  Google Scholar 

  10. 10

    Horn, G. Visual imprinting and the neural mechanisms of recognition memory. Trends Neurosci. 21, 300–305 (1998).

    CAS  Google Scholar 

  11. 11

    Metzger, M., Jiang, S. & Braun, K. Organization of the dorsalcaudal neostriatal complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting. J. Comp. Neurol. 395, 380–404 (1998).

    CAS  Google Scholar 

  12. 12

    Bredenkotter, M. & Braun, K. Changes of neuronal responsiveness in the mediorostral neostriatum/hyperstriatum after auditory filial imprinting in the domestic chick. Neuroscience 76, 355–365 (1997).

    CAS  Google Scholar 

  13. 13

    Gruss, M. & Braun, K. Stimulus evoked increase of glutamate in the mediorostral neostriatum/hyperstriatum ventrale of domestic chicks after filial imprinting: an in vivo microdialysis study. J. Neurochem. 66, 1167–1173 (1996).

    CAS  Google Scholar 

  14. 14

    Winslow, J. T. & Insel, T. R. The infant rat separation paradigm: A novel test for novel anxiolytics. Trends Pharmacol. Sci. 12, 402–404 (1991).

    CAS  Google Scholar 

  15. 15

    Sullivan, R. & Wilson, D. The locus ceruleus, norepinephrine, and memory in newborns. Br. Res. Bull. 35, 467–472 (1994). PubMed

    CAS  Google Scholar 

  16. 16

    Johnson, B. & Leon, M. Spatial distribution of [14C]2-deoxyglucose uptake in the glomerular layer of the rat olfactory bulb following early odor preference learning. J. Comp. Neurol. 376, 557–566 (1996).

    CAS  Google Scholar 

  17. 17

    Nelson, E. & Panksepp, J. Oxytocin and infant-mother bonding in rats. Behav. Neurosci. 110, 583– 592 (1996).

    CAS  Google Scholar 

  18. 18

    van Praag, H., Kemperman, G. & Gage, F. Neural consequences of environmental enrichment. Nature Rev. Neurosci. 1, 191–198 (2000).

    CAS  Google Scholar 

  19. 19

    Rosenblatt, J. S. & Siegel, H. I. in Parental Care in Mammals (eds Gubernick, D. J. & Klopfer, P. H.) 1– 76 (Plenum, New York, 1981).

    Google Scholar 

  20. 20

    Numan, M. in The Physiology of Reproduction (eds Knobil, E. & Neill, J.) 221–302 (Raven, New York, 1994).

    Google Scholar 

  21. 21

    Bridges, R. S. A quantitative analysis of the roles of dosage, sequence, and duration of estradiol and progesterone exposure in the regulation of maternal behavior in the rat. Endocrinology 114, 930– 940 (1984).

    CAS  Google Scholar 

  22. 22

    Corodimas, K. P., Rosenblatt, J. S. & Morrell, J. I. The habenular complex mediates hormonal stimulation of maternal behavior in rats. Behav. Neurosci. 106, 853–865 (1992).

    CAS  Google Scholar 

  23. 23

    Numan, M. & Sheehan, T. P. Neuroanatomical circuitry for mammalian maternal behavior. Ann. NY Acad. Sci. 807 , 101–125 (1997).

    CAS  Google Scholar 

  24. 24

    Numan, M., Corodimas, K. P., Numan, M. J., Factor, E. M. & Piers, W. D. Axon-sparing lesions of the preoptic area and substantia innominata disrupt maternal behavior in rats. Behav. Neurosci. 102, 381–395 (1988).

    CAS  Google Scholar 

  25. 25

    Bridges, R. S. & Ronsheim, P. M. Prolactin (PRL) regulation of maternal behavior in rats: Bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126, 837–848 (1990).

    CAS  Google Scholar 

  26. 26

    Lucas, B., Ormandy, C., Binart, N., Bridges, R. & Kelly, P. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139, 4102–4107 (1998).

    CAS  Google Scholar 

  27. 27

    Pedersen, C. A., Ascher, J. A., Monroe, Y. L. & Prange, A. J. Jr Oxytocin induces maternal behaviour in virgin female rats. Science 216, 648– 649 (1982).

    CAS  Google Scholar 

  28. 28

    Insel, T. R. in Mammalian Parenting, Biochemical, Neurobiological, and Behavioral Determinants (eds Krasnegor, N. & Bridges, R.) 260–280 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  29. 29

    Pedersen, C. A., Caldwell, J. O., Walker, C., Ayers, G. & Mason, G. A. Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav. Neurosci. 108, 1163– 1171 (1994).

    CAS  Google Scholar 

  30. 30

    Yu, G.-Z., Kaba, H., Okutani, F., Takahashi, S. & Higuchi, T. The olfactory bulb: A critical site of action for oxytocin in the induction of maternal behaviour in the rat. Neuroscience 72, 1083–1088 ( 1996).

    CAS  Google Scholar 

  31. 31

    Fleming, A. S. & Rosenblatt, J. S. Olfactory regulation of maternal behavior in rats: II. Effects of peripherally induced anosmia and lesions of the lateral olfactory tract in pup-induced virgins . J. Comp. Physiol. Psychol. 86, 233– 246 (1974).

    CAS  Google Scholar 

  32. 32

    Landgraf, R., Neumann, I., Russell, J. & Pittman, Q. Push-pull perfusion and microdialysis studies of central oxytocin and vasopressin release in freely moving rats during pregnancy, parturition, and lactation. NY Acad. Sci. 652, 326–339 ( 1992). PubMed

    CAS  Google Scholar 

  33. 33

    Yu, G. -Z. et al. The action of oxytocin originating in the hypothalamic paraventricular nucleus on the mitral and granule cells in the rat main olfactory bulb. Neuroscience 72, 1073–1082 (1996).

    CAS  Google Scholar 

  34. 34

    Levy, F., Kendrick, K., Keverne, E., Porter, R. & Romeyer, A. in Advances in Study of Behavior (eds Rosenblatt, J. & Snowdon, C.) 385–422 (Academic, San Diego, 1996).

    Google Scholar 

  35. 35

    Keverne, E. B., Levy, F., Poindron, P. & Lindsay, D. R. Vaginal stimulation: An important determinant of maternal bonding in sheep. Science 219, 81–83 ( 1983).

    CAS  Google Scholar 

  36. 36

    Kendrick, K. M., Levy, F. & Keverne, E. B. Importance of vaginocervical stimulation for the formation of maternal bonding in primiparous and multiparous parturient ewes. Physiol. Behav. 50, 595–600 (1991).

    CAS  Google Scholar 

  37. 37

    Kendrick, K. M., Keverne, E. B., Chapman, C. & Baldwin, B. A. Microdialysis measurement of oxytocin, aspartate, GABA and glutamate release from the olfactory bulb of sheep during vaginocervical stimulation. Brain Res. 442, 171–177 (1988).

    CAS  Google Scholar 

  38. 38

    Kendrick, K. M., Keverne, E. B. & Baldwin, B. A. Intracerebroventricular oxytocin stimulates maternal behaviour in the sheep. Neuroendocrinology 46, 56–61 (1987).

    CAS  Google Scholar 

  39. 39

    Keverne, E. & Kendrick, K. Oxytocin facilitation of maternal behavior in sheep. Ann. NY Acad. Sci. 652, 83–101 (1992).

    CAS  Google Scholar 

  40. 40

    Levy, F., Kendrick, K., Keverne, E., Piketty, V. & Poindron, P. Intracerebral oxytocin is important for the onset of maternal behavior in inexperienced ewes delivered under peridural anesthesia. Behav. Neurosci. 106, 427– 432 (1992).

    CAS  Google Scholar 

  41. 41

    Broad, K., Kendrick, K., Sirinathsinghji, D. & Keverne, E. Changes in oxytocin immunoreactivity and mRNA expression in the sheep brain during pregnancy, parturition and lactation and in response to oestrogen and progesterone. J. Neuroendocrinol. 5, 435 –444 (1993).

    CAS  Google Scholar 

  42. 42

    Broad, K. et al. Previous maternal experience potentiates the effect of parturition on oxytocin receptor mRNA expression in the paraventricular nucleus. Eur. J. Neurosci. 11, 3725–3737 (1999).

    CAS  Google Scholar 

  43. 43

    Kendrick, K. et al. Neural control of maternal behaviour and olfactory recognition of offspring. Brain Res. Bull. 44, 383– 395 (1997).

    CAS  Google Scholar 

  44. 44

    Da Costa, A. P. C., Guevara-Guzman, R. G., Ohkura, S., Goode, J. A. & Kendrick, K. M. The role of oxytocin release in the paraventricular nucleus in the control of maternal behaviour in the sheep. J. Neuroendocrinol. 8, 163– 177 (1996).

    CAS  Google Scholar 

  45. 45

    Levy, F., Kendrick, K. M., Goode, J. A., Guevara-Guzman, R. & Keverne, E. B. Oxytocin and vasopressin release in the olfactory bulb of parturient ewes: changes with maternal experience and effects on acetylcholine, γ-aminobutyric acid, glutamate and noradrenaline release. Brain Res. 669 , 197–206 (1995).

    CAS  Google Scholar 

  46. 46

    Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nature Rev. Neurosci. 1, 41–50 (2000).

    CAS  Google Scholar 

  47. 47

    Kendrick, K., Levy, F. & Keverne, E. Changes in the sensory processing of olfactory signals induced by birth in sheep. Science 256, 833–836 (1992).

    CAS  Google Scholar 

  48. 48

    Kendrick, K. et al. Formation of olfactory memories mediated by nitric oxide. Nature 388, 670–674 ( 1997).

    CAS  Google Scholar 

  49. 49

    Brennnan, P., Schellinck, H., De La Riva, C., Kendrick, K. & Keverne, E. Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure. Neuroscience 87, 583–590 (1998).

    Google Scholar 

  50. 50

    Guevara-Guzman, R., Barrera-Mera, B., De La Riva, C. & Kendrick, K. Release of classical neurotransmitters and nitric oxide in the rat olfactory bulb, evoked by vaginocervical stimulation and potassium, varies with the oestrus cycle. Eur. J. Neurosci. 12, 80– 88 (2000).

    CAS  Google Scholar 

  51. 51

    Kleiman, D. G. Monogamy in mammals. Q. Rev. Biol. 52, 39 –69 (1977).

    CAS  Google Scholar 

  52. 52

    Dewsbury, D. A. in American Zoology Nebraska Symposium on Motivation (ed. Leger, D. W.) 1–50 (Nebraska Univ. Press, Lincoln, Nebraska, 1988).

    Google Scholar 

  53. 53

    Carter, C., DeVries, A. & Getz, L. Physiological substrates of mammalian monogamy: The prairie vole model. Neurosci. Biobehav. Rev. 19, 303–314 (1995).

    CAS  Google Scholar 

  54. 54

    Witt, D. M. Oxytocin and rodent sociosexual responses: from behavior to gene expression . Neurosci. Biobehav. Rev. 19, 315– 324 (1995).

    CAS  Google Scholar 

  55. 55

    Williams, J., Insel, T., Harbaugh, C. & Carter, C. Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J. Neuroendocrinol. 6, 247–250 (1994).

    CAS  Google Scholar 

  56. 56

    Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R. & Insel, T. R. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365, 545–548 (1993).

    CAS  Google Scholar 

  57. 57

    Insel, T. R. & Hulihan, T. J. A gender specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles . Behav. Neurosci. 109, 782– 789 (1995).

    CAS  Google Scholar 

  58. 58

    Winslow, J. T., Shapiro, L. E., Carter, C. S. & Insel, T. R. Oxytocin and complex social behaviors: species comparisons. Psychopharmacol. Bull. 29, 409–414 ( 1993).

    CAS  Google Scholar 

  59. 59

    Young, L. J., Winslow, J. T., Nilsen, R. & Insel, T. R. Species differences in V1a receptor gene expression in monogamous and nonmonogamous voles: Behavioral consequences. Behav. Neurosci. 111 , 599–605 (1997).

    CAS  Google Scholar 

  60. 60

    Wang, Z. X., Zhou, L., Hulihan, T. J. & Insel, T. R. Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: A quantitative comparative study. J. Comp. Neurol. 366, 726–737 (1996).

    CAS  Google Scholar 

  61. 61

    Insel, T. R. & Shapiro, L. E. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl Acad. Sci. USA 89, 5981– 5985 (1992).

    CAS  Google Scholar 

  62. 62

    Insel, T. R., Wang, Z. & Ferris, C. F. Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. J. Neurosci. 14, 5381–5392 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Young, L. J., Huot, B., Nilsen, R., Wang, Z. & Insel, T. R. Species differences in central oxytocin receptor gene expression: Comparative analysis of promoter sequences. J. Neuroendocrinol. 8, 777–783 ( 1996).

    CAS  Google Scholar 

  64. 64

    Young, L. J., Gingrich, B. & Insel, T. R. Molecular and cellular mechanisms of monogamy. Horm. Behav. (in the press).

  65. 65

    Sharer, C. et al. Manipulation of vasopressin receptor expression in adult brain using an AAV viral vector. Soc. Neurosci. Annu. Meeting 30, 373.11 (2000).

    Google Scholar 

  66. 66

    Young, L. J. Oxytocin and vasopressin receptors and species-typical social behaviors. Horm. Behav. 36, 212–221 (1999).

    CAS  Google Scholar 

  67. 67

    Wang, Z. et al. Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles: A mechanism for pair bonding. Behav. Neurosci. 113, 602–611 ( 1999).

    CAS  Google Scholar 

  68. 68

    Gingrich, B., Liu, Y., Cascio, C., Wang, Z. & Insel, T. R. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles. Behav. Neurosci. 114, 173–183 ( 2000).

    CAS  Google Scholar 

  69. 69

    Everitt, B. et al. Associative process in addiction and reward. Ann. NY Acad Sci. 877, 412–438 (1999).

    CAS  Google Scholar 

  70. 70

    Young, L., Nilsen, R., Waymire, K., MacGregor, G. & Insel, T. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400, 766–768 (1999).

    CAS  Google Scholar 

  71. 71

    Levy, F., Kendrick, K. M., Keverne, E. B., Porter, R. H. & Romeyer, A. in Parental Care: Evolution, Mechanisms, and Adaptive Significance (eds Rosenblatt, J. S. & Snowdon, C. T.) 385–416 (Academic, San Diego, 1996 ).

    Google Scholar 

  72. 72

    Carter, C. S., Witt, D. M., Schneider, J., Harris, L. & Volkening, D. Male stimuli are necessary for female sexual behavior and uterine growth in prairie voles (Microtus ochrogaster ). Horm. Behav. 21, 74– 82 (1987).

    CAS  Google Scholar 

  73. 73

    Kovacs, G. L. & Telegdy, G. in Oxytocin: Clinical and Laboratory Studies (eds Amico, J. & Robinson, A. G.) 359– 371 (Elsevier, New York, 1985).

    Google Scholar 

  74. 74

    Ferguson, J., Young, L., Hearn, E., Insel, T. & Winslow, J. Social amnesia in mice lacking the oxytocin gene. Nature Genet. 25, 284–288 (2000).

    CAS  Google Scholar 

  75. 75

    Ferguson, J., Aldag, J., Winslow, J., Insel, T. R. & Young, L. J. Neural activation in the socially amnestic mouse . Soc. Neurosci. Annu. Meeting 30, 373.8 (2000).

    Google Scholar 

  76. 76

    Herman, B. H. & Panksepp, J. Effects of morphine and naloxone on separation distress and approach attachment: Evidence for opiate mediation of social affect. Pharmacol. Biochem. Behav. 9, 213–220 (1978).

    CAS  Google Scholar 

  77. 77

    Martel, F. L., Nevison, C. M., Simpson, M. J. & Keverne, E. B. Effects of opioid receptor blockade on the social behavior of rhesus monkeys living in large family groups. Dev. Psychobiol. 28, 71–84 (1995).

    CAS  Google Scholar 

  78. 78

    Insel, T. R. Oxytocin: a neuropeptide for affiliation — evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17, 3–33 (1992 ).

    CAS  Google Scholar 

  79. 79

    Holman, S. D. & Goy, R. W. in Motherhood in Human and Non-Human Primates (eds Pryce, C. R. & Martin, R. D.) 87– 93 (Karger, Basel, 1994).

    Google Scholar 

  80. 80

    Insel, T. R. Regional changes in brain oxytocin receptor post-partum: Time-course and relationship to maternal behavior. J. Neuroendocrinol. 2, 539–545 (1990).

    CAS  Google Scholar 

  81. 81

    Ferreira, G. et al. Learning of olfactory cues is not necessary for early lamb recognition by the mother. Phys. Behav. 69, 405–412 (2000). PubMed

    CAS  Google Scholar 

  82. 82

    Kendrick, K. Oxytocin, motherhood, and bonding. Exp. Physiol. 85 , 111S–124S (2000).

    CAS  Google Scholar 

  83. 83

    Keverne, E. B., Martensz, N. & Tuite, B. B-endorphin concentrations in CSF of monkeys are influenced by grooming relationships. Psychoneuroendocrinology 14, 155–161 (1989).

    CAS  PubMed  Google Scholar 

  84. 84

    Bicknell, R. J. & Leng, G. Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis. Nature 298, 161–162 ( 1982).

    CAS  Google Scholar 

  85. 85

    Pedersen, C. A., Caldwell, J. D., Walker, C., Ayers, G. & Mason, G. A. Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic area. Behav. Neurosci. 108, 1163– 1171 (1994).

    CAS  Google Scholar 

  86. 86

    Giordano, A., Johnson, A. & Rosenblatt, J. Haloperidol-induced disruption of retrieval behavior and reversal with apomorphine in lactating rats. Physiol. Behav. 48, 211–214 ( 1990).

    CAS  Google Scholar 

  87. 87

    Hansen, S., Harthon, C., Wallin, E., Lofberg, I. & Svensson, K. Mesotelencephalic dopamine system and and reproductive behavior in the female rat: Effects of ventral tegmental 6-OHDA lesions on maternal and sexual responsiveness. Behav. Neurosci. 105, 588–598 (1991).

    CAS  Google Scholar 

  88. 88

    Keer, S. & Stern, J. Dopamine receptor blockade in the nucleus accumbens inhibits maternal retrieval and licking, but enhances nursing behavior in lactating rats. Physiol. Behav. 67, 659–669 (1999).

    CAS  Google Scholar 

  89. 89

    Panksepp, J. Affective Neuroscience (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  90. 90

    Loup, F., Tribollet, E., Dubois-Dauphin, M. & Dreifuss, J. J. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res. 555, 220–232 (1991).

    CAS  Google Scholar 

  91. 91

    Wang, Z. et al. Vasopressin in the forebrain of common marmosets (Callithrix jacchus): Studies with in situ hybridization, immunocytochemistry and receptor autoradiography. Brain Res. 768, 147–156 (1997).

    CAS  Google Scholar 

  92. 92

    Breiter, H. et al. Acute effects of cocaine on human brain activity and emotion . Neuron 19, 591–611 (1997).

    CAS  Google Scholar 

Download references


The authors are supported by NSF and NIMH. The authors thank M. Davis for his comments on an early draft of the manuscript and Z. Wang for his contributions to many of the ideas and results described.

Author information



Corresponding author

Correspondence to Thomas R. Insel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Insel, T., Young, L. The neurobiology of attachment. Nat Rev Neurosci 2, 129–136 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing