Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules

Abstract

Major pathways of recombinational DNA repair in Escherichia coli require the RecBCD protein—a heterotrimeric, ATP-driven, DNA translocating motor enzyme. RecBCD combines a highly processive and exceptionally fast helicase (DNA-unwinding) activity with a strand-specific nuclease (DNA-cleaving) activity (refs 1, 2 and references therein). Recognition of the DNA sequence ‘χ’ (5′-GCTGGTGG-3′) switches the polarity of DNA cleavage and stimulates recombination at nearby sequences in vivo. Here we attach microscopic polystyrene beads to biotin-tagged RecD protein subunits and use tethered-particle light microscopy to observe translocation of single RecBCD molecules (with a precision of up to 30 nm at 2 Hz) and to examine the mechanism by which χ modifies enzyme activity. Observed translocation is unidirectional, with each molecule moving at a constant velocity corresponding to the population-average DNA unwinding rate. These observations place strong constraints on possible movement mechanisms. Bead release at χ is negligible, showing that the activity modification at χ does not require ejection of the RecD subunit from the enzyme as previously proposed; modification may occur through an unusual, pure conformational switch mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observing translocation along DNA by single RecBCD-bio molecules.
Figure 2: Time courses and rates of translocation.
Figure 3: Non-denaturing electrophoresis gel autoradiogram showing production of χ-specific DNA fragments by RecBCD-bio.
Figure 4: RecD release at χ.

Similar content being viewed by others

References

  1. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751 –813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gelles, J. & Landick, R. RNA polymerase as a molecular motor. Cell 93, 13–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Lovett, S. T., Luisi-DeLuca, C. & Kolodner, R. D. The genetic dependence of recombination in recD mutants of Escherichia coli. Genetics 120, 37–45 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schafer, D. A., Gelles, J., Sheetz, M. P. & Landick, R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–448 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Yin, H., Landick, R. & Gelles, J. Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys J. 67, 2468–2478 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Finzi, L. & Gelles, J. Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules. Science 267, 378–380 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Roman, L. J. & Kowalczykowski, S. C. Characterization of the adenosinetriphosphatase activity of the Escherichia coli RecBCD enzyme: relationship of ATP hydrolysis to the unwinding of duplex DNA. Biochemistry 28, 2873–2881 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Roman, L. J. & Kowalczykowski, S. C. Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28, 2863– 2873 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Guajardo, R. & Sousa, R. A model for the mechanism of polymerase translocation. J. Mol. Biol. 265, 8-19 (1997).

    Article  PubMed  Google Scholar 

  13. Thaler, D. S. et al. in Mechanisms and Consequences of DNA Damage Processing (eds Friedberg, E. & Hanawalt, P.) 413–422 (Alan. R. Liss, New York, 1988).

    Google Scholar 

  14. Dixon, D. A., Churchill, J. J. & Kowalczykowski, S. C. Reversible inactivation of the Escherichia coli RecBCD enzyme by the recombination hotspot chi in vitro: evidence for functional inactivation or loss of the RecD subunit. Proc. Natl Acad. Sci. USA 91, 2980–2984 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Myers, R. S., Kuzminov, A. & Stahl, F. W. The recombination hot spot chi activates RecBCD recombination by converting Escherichia coli to a recD mutant phenocopy. Proc. Natl Acad. Sci. USA 92, 6244– 6248 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stahl, F. W., Thomason, L. C., Siddiqi, I. & Stahl, M. M. Further tests of a recombination model in which chi removes the RecD subunit from the RecBCD enzyme of Escherichia coli. Genetics 126, 519–533 (1990); erratum ibid. 135, 1232 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor, A. F. & Smith, G. R. Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits. Genes Dev. 13, 890–900 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koppen, A., Krobitsch, S., Thoms, B. & Wackernagel, W. Interaction with the recombination hot spot chi in vivo converts the RecBCD enzyme of Escherichia coli into a chi-independent recombinase by inactivation of the RecD subunit. Proc. Natl Acad. Sci. USA 92, 6249–6253 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson, D. G., Churchill, J. J. & Kowalczykowski, S. C. Chi-activated RecBCD enzyme possesses 5′→3′ nucleolytic activity, but RecBC enzyme does not: evidence suggesting that the alteration induced by Chi is not simply ejection of the RecD subunit. Genes Cells 2, 117– 128 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Dixon, D. A. & Kowalczykowski, S. C. The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73, 87–96 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Roman, L. J., Eggleston, A. K. & Kowalczykowski, S. C. Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme. J. Biol. Chem. 267, 4207–4214 (1992).

    CAS  PubMed  Google Scholar 

  22. Taylor, A. F., Schultz, D. W., Ponticelli, A. S. & Smith, G. R. RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell 41, 153– 163 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Cronan, J. E. Jr Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem. 265, 10327–10333 (1990).

    CAS  PubMed  Google Scholar 

  24. Boehmer, P. E. & Emmerson, P. T. Escherichia coli RecBCD enzyme: inducible overproduction and reconstitution of the ATP-dependent deoxyribonuclease from purified subunits. Gene 102, 1–6 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Eichler, D. C. & Lehman, I. R. On the role of ATP in phosphodiester bond hydrolysis catalyzed by the recBC deoxyribonuclease of Escherichia coli. J. Biol. Chem. 252, 499–503 (1977).

    CAS  PubMed  Google Scholar 

  26. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B. & Gelles, J. Subunit interactions in dimeric kinesin heavy chain derivatives that lack the kinesin rod. J. Biol. Chem. 270, 3926–3931 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  27. Berliner, E. et al. Microtubule movement by a biotinated kinesin bound to streptavidin-coated surface. J. Biol. Chem. 269, 8610– 8615 (1994); erratum ibid. 269, 23382 (1994).

    CAS  PubMed  Google Scholar 

  28. Anderson, D. G., Churchill, J. J. & Kowalczykowski, S. C. A single mutation, RecB(D1080A) eliminates RecA protein loading but not Chi recognition by RecBCD enzyme. J. Biol. Chem. 274, 27139–27144 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Berliner, E., Young, E. C., Anderson, K., Mahtani, H. K. & Gelles, J. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373, 718–721 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Taylor, A. F. & Smith, G. R. Strand specificity of nicking of DNA at Chi sites by RecBCD enzyme. Modulation by ATP and magnesium levels. J. Biol. Chem. 270, 24459– 24467 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Bianco, P. Boehmer, S. Kowalczykowski, S. Lovett and A. Taylor for materials and helpful advice. This work was supported by the NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Gelles.

Supplementary information

41586_2001_BF35053124_MOESM1_ESM.mov

Quicktime video of a bead-labeled RecBCD-bio molecule translocating along a single DNA molecule. This experiment was performed as shown in Fig. 1 of the paper, except that the ATP concentration was reduced to 10 µM to slow translocation. The video is real time; the frame size is 6.5 µm wide by 6.6 µm tall. (MOV 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohoney, K., Gelles, J. χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature 409, 370–374 (2001). https://doi.org/10.1038/35053124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing