Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The electric Moho

Abstract

Since Mohorovičić1 discovered a dramatic increase in compressional seismic velocity at a depth of 54 km beneath the Kulpa Valley in Croatia, the ‘Moho’ has become arguably the most important seismological horizon in Earth owing to its role in defining the crust–mantle boundary. It is now known to be a ubiquitous feature of the Earth, being found beneath both the continents and the oceans, and is commonly assumed to separate lower-crustal mafic rocks from upper-mantle ultramafic rocks. Electromagnetic experiments conducted to date, however, have failed to detect a corresponding change in electrical conductivity at the base of the crust, although one might be expected on the basis of laboratory measurements2. Here we report electromagnetic data from the Slave craton, northern Canada, which show a step-change in conductivity at Moho depths. Such resolution is possible because the Slave craton is highly anomalous, exhibiting a total crustal conductance of less than 1 Siemens—more than an order of magnitude smaller than other Archaean cratons. We also found that the conductivity of the uppermost continental mantle directly beneath the Moho is two orders of magnitude more conducting than laboratory studies on olivine would suggest, inferring that there must be a connected conducting phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic map of the Slave craton in the northwestern part of the Canadian Shield.
Figure 2: Contoured magnetotelluric phase responses for the seven sites from Yellowknife to the surface expression of the western boundary of the Slave craton.
Figure 3: Magnetotelluric response from a central site on the profile, site 106 (Fig. 2).
Figure 4: One-dimensional conductivity–depth models that fit the averaged impedances21 of the responses shown in Fig. 3.

Similar content being viewed by others

References

  1. Mohorovičić, A. Godisnje izvjesce zagrebackog meteoroloskog opservatorija za godinu 1909 1–56 (Zagreb, 1910) (in Croatian); Das Beben vom 8. X. 1909. Jahrb. Meteorol. Obs. Zagreb 9, Teil 4, Absch. 1, 1–63 (1910) (in German); The earthquake from 8th October 1909. Geofizika 9, 3–55 ( 1992) (in English).

    Google Scholar 

  2. Haak, V. in Numerical Data and Functional Relationships in Science and Technology Vol. 1, Subvol. b, Ch. 5, Sect. 4 (ed. Angenheister, G.) 291– 307 (Springer, Berlin, 1982).

    Google Scholar 

  3. Jones, A. G. in Continental Lower Crust Ch. 3 (eds Fountain, D. M., Arculus, R. & Kay, R. W.) 81–143 (Developments in Geotectonics 23, Elsevier, Amsterdam, 1992).

    Google Scholar 

  4. Gough, D. I. Seismic reflectors, conductivity, water and stress in the continental crust. Nature 323, 143–144 (1986).

    Article  ADS  Google Scholar 

  5. Jones, A. G. MT and reflection: an essential combination. Geophys. J. R. Astron. Soc. 89, 7–18 ( 1987).

    Article  ADS  Google Scholar 

  6. Yardley, B. W. D. Is there water in the deep continental crust? Nature 323, 111 (1986).

    Article  ADS  Google Scholar 

  7. Frost, B. R. et al. Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature 340, 134–136 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Yardley, B. W. D. & Valley, J. W. The petrologic case for a dry lower crust. J. Geophys. Res. 102, 12173–12185 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Jones, A. G. On the electrical crust-mantle structure in Fennoscandia: no Moho and the asthenosphere revealed? Geophys. J. R. Astron. Soc. 68, 371–388 (1982).

    Article  ADS  Google Scholar 

  10. Ferguson, I. J. & Edwards, R. N. Electromagnetic mode conversion by surface-conductivity anomalies; applications for conductivity soundings. Geophys. J. Int. 117, 48– 68 (1994).

    Article  ADS  Google Scholar 

  11. Jones, A. G. Imaging the continental upper mantle using electromagnetic methods. Lithos 48, 57–80 ( 1999).

    Article  ADS  CAS  Google Scholar 

  12. Campbell, W. H. Introduction to electrical properties of the Earth's mantle. Pure Appl. Geophys. 125, 193–204 (1987).

    Article  ADS  Google Scholar 

  13. Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett. 20, 2941– 2944 (1993).

    Article  ADS  Google Scholar 

  14. Clowes, R. M. (ed.) LITHOPROBE Phase V Proposal (Lithoprobe Secretariat, Univ. British Columbia, Vancouver, 1997).

    Google Scholar 

  15. Stern, R. A. & Bleeker, W. Age of the world's oldest rocks refined using Canada's SHRIMP: The Acasta Gneiss Complex, Northwest Territories, Canada. Geosci. Can. 25, 27– 31 (1998).

    Google Scholar 

  16. Bleeker, W. et al. The Central Slave Basement Complex, Part I: its structural topology and autochthonous cover. Can. J. Earth Sci. 36, 1083–1109 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Jones, A. G. et al. A comparison of techniques for magnetotelluric response function estimation. J. Geophys. Res. 94, 14201 –14213 (1989).

    Article  ADS  Google Scholar 

  18. McNeice, G. & Jones, A. G. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics (in the press).

  19. Jones, A. G. Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics 53, 967– 978 (1988).

    Article  ADS  Google Scholar 

  20. Garcia, X. & Jones, A. G. Study of ionospheric sources for audiomagnetotelluric (AMT) sounding. Geophysics (submitted).

  21. Parker, R. L. & Booker, J. R. Optimal one-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements. Phys. Earth Planet. Inter. 98, 269– 282 (1996).

    Article  ADS  Google Scholar 

  22. Berdichevsky, M. N. & Dmitriev, V. I. in Geoelectric and Geothermal Studies (ed. Adam, A.) 165–221 (KAPG Geophysical Monograph, Akademiai Kiado, Budapest, 1976).

    Google Scholar 

  23. Fischer, G. & Le Quang, B. V. Topography and minimization of the standard deviation in one-dimensional magnetotelluric modelling. Geophys. J. R. Astron. Soc. 67, 279– 292 (1981).

    Article  ADS  Google Scholar 

  24. Constable, S. C., Parker, R. L. & Constable, C. G. Occam's inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52, 289–300 (1987).

    Article  ADS  Google Scholar 

  25. Parker, R. L. The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data. J. Geophys. Res. 85, 4421–4425 (1980).

    Article  ADS  Google Scholar 

  26. Cook, F. A. et al. Frozen subduction in Canada's Northwest Territories; Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics 18, 1–24 ( 1999).

    Article  ADS  Google Scholar 

  27. Viejo, G. F., Clowes, R. M. & Amor, J. R. Imaging the lithospheric mantle in northwestern Canada with seismic wide-angle reflections. Geophys. Res. Lett. 26, 2809–2813 (1999).

    Article  ADS  Google Scholar 

  28. Bostock, M. G. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res. 103, 21183–21200 ( 1998).

    Article  ADS  Google Scholar 

  29. Constable, S., Shankland, T. J. & Duba, A. The electrical conductivity of an isotropic olivine mantle. J. Geophys. Res. 97, 3397– 3404 (1992).

    Article  ADS  Google Scholar 

  30. Olhoeft, G. Electrical properties of granite with implications for the lower crust. J. Geophys. Res. 86, 931–936 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Jones, A. G., Katsube, J. & Schwann, P. The longest conductivity anomaly in the world explained: sulphides in fold hinges causing very high electrical anisotropy. J. Geomagn. Geoelectr. 49, 1619–1629 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of Lithoprobe, Canada's national geoscience programme, funded by the Natural Sciences and Engineering Research Council of Canada and the Geological Survey of Canada. We thank the staff of Phoenix Geophysics Ltd for their attention to high-quality data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A., Ferguson, I. The electric Moho. Nature 409, 331–333 (2001). https://doi.org/10.1038/35053053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053053

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing