Letter | Published:

300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin

Naturevolume 409pages327331 (2001) | Download Citation



Except in regions of recent crustal extension1, the dominant origin of carbon dioxide in fluids in sedimentary basins has been assumed to be from crustal organic matter2 or mineral reactions3,4. Here we show, by contrast, that Rayleigh fractionation caused by partial degassing of a magma body can explain the CO2/3He ratios and δ13C(CO2) values observed in CO2-rich natural gases in the west Texas Val Verde basin and also the mantle 3He/22Ne ratios observed in other basin systems5. Regional changes in CO2/3He and CO2/CH4 ratios can be explained if the CO2 input pre-dates methane generation in the basin, which occurred about 280 Myr ago6. Uplift to the north of the Val Verde basin between 310 and 280 Myr ago6 appears to be the only tectonic event with appropriate timing and location to be the source of the magmatic CO2. Our identification of magmatic CO2 in a foreland basin indicates that the origin of CO2 in other mid-continent basin systems should be re-evaluated. Also, the inferred closed-system preservation of natural gas in a trapping structure for 300 Myr is far longer than the residence time predicted by diffusion models7,8.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Sherwood Lollar, B., Ballentine, C. J. & O'Nions, R. K. The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures. Geochim. Cosmochim. Acta 61, 2295– 2307 (1997).

  2. 2

    Kharaka, Y. K., Carothers, W. W. & Rosenbauer, R. J. Thermal decarboxylation of acetic acid: implications for origin of natural gas. Geochim. Cosmochim. Acta 47, 397–402 (1983).

  3. 3

    Hutcheon, I. & Abercrombie, H. Carbon dioxide in clastic rocks and silicate hydrolysis. Geology 18, 541 –544 (1990).

  4. 4

    Schoell, M. & Cathles, L. M. High CO2 in natural gases as a late stage high temperature component in the evolution of petroleum systems. Abstr. Am. Chem. Soc. 215, U623 –U623 (1998).

  5. 5

    Ballentine, C. J. Resolving the mantle He/Ne and crustal 21Ne/22Ne in well gases. Earth Planet. Sci. Lett. 152, 233–250 (1997).

  6. 6

    Horak, R. L. Tectonic and hydrocarbon maturation history in the Permian basin. Oil Gas J. 83, 124–129 ( 1985).

  7. 7

    Schlomer, S. & Krooss, B. M. Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Mar. Petrol. Geol. 14, 563–578 ( 1997).

  8. 8

    Krooss, B. M., Leythaeuser, D. & Schaefer, R. G. The quantification of diffusive hydrocarbon losses through cap rocks of natural gas reservoirs - a reevaluation. Am. Assoc. Petrol. Geol. 76, 403–406 (1992).

  9. 9

    Caffee, M. W. et al. Primordial noble gases from the Earth's mantle: Identification of a primitive volatile component. Science 285, 2115–2118 (1999).

  10. 10

    Jenden, P. D., Hilton, D. R., Kaplan, I. R. & Craig, H. Abiogenic hydrocarbons and mantle helium in oil and gas fields. Prof. Pap. US Geol. Surv. 1570, 31– 56 (1993).

  11. 11

    Oxburgh, E. R., O'Nions, R. K. & Hill, R. I. Helium isotopes in sedimentary basins. Nature 324, 632–635 ( 1986).

  12. 12

    Trull, T. W. & Kurz, M. D. Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures. Geochim. Cosmochim. Acta 57, 1313–1324 (1993).

  13. 13

    Marty, B. & Jambon, A. C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26 (1987).

  14. 14

    Trull, T., Nadeau, S., Pineau, F., Polve, M. & Javoy, M. C-He systematics in hotspot xenoliths: Implications for mantle carbon contents and carbon recycling. Earth Planet. Sci. Lett. 118, 43–64 ( 1993).

  15. 15

    Hilton, D. R., McMurtry, G. M. & Goff, F. Large variations in vent fluid CO2/3He ratios signal rapid changes in magma chemistry at Loihi seamount, Hawaii. Nature 396, 359– 362 (1998).

  16. 16

    Burnard, P., Graham, D. & Turner, G. Vesicle-specific noble gas analysis of “popping rock”: Implications for primordial noble gases in earth. Science 276, 568–571 ( 1997).

  17. 17

    Schumaker, R. C. Paleozoic structure of the Central basin uplift and adjacent Delaware basin, West Texas. Bull. Am. Assoc. Petrol. Geol. 76, 1804–1824 (1992).

  18. 18

    Ye, H., Royden, L., Burchfiel, C. & Schuepbach, M. Late Paleozoic deformation of interior North America: The Greater Ancestral Rocky Mountains. Bull. Am. Assoc. Petrol. Geol. 80, 1397–1432 (1996).

  19. 19

    Montgomery, S. L. Val Verde Basin: Thrusted Strawn (Pennsylvanian) carbonate reservoirs, Pakenham field area. Bull. Am. Assoc. Petrol. Geol. 80, 987–998 (1996).

  20. 20

    Ballentine, C. J., O'Nions, R. K., Oxburgh, E. R., Horvath, F. & Deak, J. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229– 246 (1991).

  21. 21

    Kennedy, B. M., Hiyagon, H. & Reynolds, J. H. Crustal neon: a striking uniformity. Earth Planet. Sci. Lett. 98, 277–286 (1990).

  22. 22

    Sackett, W. M. & Chung, M. H. Experimental confirmation of the lack of carbon isotope exchange between methane and carbon oxides at high temperatures. Geochim. Cosmochim. Acta 43 (1979).

  23. 23

    Henry, C. D., Price, J. G. & James, E. W. Mid-Cenozoic stress evolution and magmatism in the southern Cordillera, Texas and Mexico. Transition from continental arc to intraplate extension. J. Geophys. Res. 96, 13545–13560 (1991).

  24. 24

    Ewing, T. E. in New Mexico Geological Society Guidebook, 44th Field Conf. (eds Love, D. W. et al.) 155–167 (New Mexico Geological Society, Socorro, 1993).

  25. 25

    Griesshaber, E., O'Nions, R. K. & Oxburgh, E. R. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F. R. G. Chem. Geol. 99, 213–235 (1992).

  26. 26

    Weinlich, F. H. et al. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim. Cosmochim. Acta 63, 3653–3671 (1999).

  27. 27

    Kennedy, B. M. et al. Mantle fluids in the San Andreas fault system, California. Science 278, 1278–1281 (1997).

  28. 28

    Javoy, M. & Pineau, F. The volatile record of a ‘popping’ rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in vesicles. Earth Planet. Sci. Lett. 107, 598–611 (1991).

  29. 29

    Mattey, D. P. Carbon-dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim. Cosmochim. Acta 55, 3467– 3473 (1991).

  30. 30

    Bottinga, Y. & Javoy, M. MORB degassing: bubble growth and ascent. Chem. Geol. 81, 255– 270 (1991).

Download references


We thank P. Jenden and M. Laroche for discussions, and L. Price and B. Marty for comments and suggestions. This work was supported by the US Department of Energy, the Gas Research Institute project ‘Advanced stable isotope techniques’ and the ETH, Zürich.

Author information


  1. IGMR, Dept Erdwissenschaften, ETH Zentrum NO CO 61.7, Zürich, 8092, Switzerland

    • Chris J. Ballentine
  2. Chevron Research and Technology Company , 6001 Bollinger Canyon, San Ramon, 94583, California, USA

    • Martin Schoell
  3. Isotech Laboratories Inc., 1308 Parkland Court, Champaign, 61821-1826, Illinois, USA

    • Dennis Coleman
  4. Altura Energy LLP, Houston , 77210-4294, Texas, USA

    • Bruce A. Cain


  1. Search for Chris J. Ballentine in:

  2. Search for Martin Schoell in:

  3. Search for Dennis Coleman in:

  4. Search for Bruce A. Cain in:

Corresponding author

Correspondence to Chris J. Ballentine.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.