Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Retroviral recombination: what drives the switch?

Abstract

The high rate of recombination in retroviruses is due to the frequent template switching that occurs during reverse transcription. Although the mechanism that leads to this switch is still a matter of debate, there is increasing evidence that specific RNA structures are involved. And the implications might go beyond retroviral genetic variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reverse transcription in the life cycle of retroviruses.
Figure 2: The catalytic subunit of HIV-1 reverse transcriptase.
Figure 3: A pre-recombination intermediate?
Figure 4: Reverse transcriptases from retroelements.

Similar content being viewed by others

References

  1. Rein, A. Retroviral RNA packaging: a review. Arch. Virol. Suppl. 9, 513–522 (1994).

    CAS  Google Scholar 

  2. Gilboa, E., Mitra, S. W., Goff, S. & Baltimore, D. A detailed model of reverse transcription and tests of crucial aspects. Cell 18, 93–100 (1979).

    Article  CAS  Google Scholar 

  3. Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  4. Goodrich, D. W. & Duesberg, P. H. Retroviral recombination during reverse transcription. Proc. Natl Acad. Sci. USA 87, 2052–2056 (1990).

    Article  CAS  Google Scholar 

  5. Hu, W. S. & Temin, H. M. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Natl Acad. Sci. USA 87, 1556–1560 (1990).

    Article  CAS  Google Scholar 

  6. Coffin, J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol. 42, 1–26 (1979).

    Article  CAS  Google Scholar 

  7. Elder, J. H. et al. Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants. Proc. Natl Acad. Sci. USA 74, 4676–4680 (1977).

    Article  CAS  Google Scholar 

  8. Blair, D. G. Genetic recombination between avian leukosis and sarcoma viruses. Experimental variables and the frequencies of recombination. Virology 77, 534–544 (1977).

    Article  CAS  Google Scholar 

  9. Sharp, P. M., Bailes, E., Robertson, D. L., Gao, F. & Hahn, B. H. Origins and evolution of AIDS viruses. Biol. Bull. 196, 338–342 (1999).

    Article  CAS  Google Scholar 

  10. Peliska, J. A. & Benkovic, S. J. Mechanism of DNA strand transfer reactions catalysed by HIV-1 reverse transcriptase. Science 258, 1112–1118 (1992).

    Article  CAS  Google Scholar 

  11. DeStefano, J. J., Mallaber, L. M., Rodriguez-Rodriguez, L., Fay, P. J. & Bambara, R. A. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J. Virol. 66, 6370–6378 (1992).

    CAS  PubMed Central  Google Scholar 

  12. DeStefano, J. J., Bambara, R. A. & Fay, P. J. The mechanism of human immunodeficiency virus reverse transcriptase-catalysed strand transfer from internal regions of heteropolymeric RNA templates. J. Biol. Chem. 269, 161–168 (1994).

    CAS  Google Scholar 

  13. Wu, W., Blumberg, B. M., Fay, P. J. & Bambara, R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J. Biol. Chem. 270, 325–332 (1995).

    Article  Google Scholar 

  14. Suo, Z. & Johnson, K. A. Effect of RNA secondary structure on the kinetics of DNA synthesis catalysed by HIV-1 reverse transcriptase. Biochemistry 36, 12459–12467 (1997).

    Article  CAS  Google Scholar 

  15. Kim, J. K., Palaniappan, C., Wu, W., Fay, P. J. & Bambara, R. A. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J. Biol. Chem. 272, 16769–16777 (1997).

    Article  CAS  Google Scholar 

  16. Darlix, J. L., Lapadat-Tapolsky, M., de Rocquigny, H. & Roques, B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J. Mol. Biol. 254, 523–537 (1995).

    Article  CAS  Google Scholar 

  17. Negroni, M. & Buc, H. Recombination during reverse transcription: an evaluation of the role of the nucleocapsid protein. J. Mol. Biol. 286, 15–31 (1999).

    Article  CAS  Google Scholar 

  18. Guo, J., Henderson, L. E., Bess, J., Kane, B. & Levin, J. G. Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J. Virol. 71, 5178–5188 (1997).

    CAS  PubMed Central  Google Scholar 

  19. Peliska, J. A., Balasubramanian, S., Giedroc, D. P. & Benkovic, S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalysed DNA strand transfer reactions and modulates RNase H activity. Biochemistry 33, 13817–13823 (1994).

    Article  CAS  Google Scholar 

  20. Rodriguez-Rodriguez, L., Tsuchihashi, Z., Fuentes, G. M., Bambara, R. A. & Fay, P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J. Biol. Chem. 270, 15005–15011 (1995).

    Article  CAS  Google Scholar 

  21. Allain, B., Lapadat-Tapolsky, M., Berlioz, C. & Darlix, J. -L. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J. 13, 973–981 (1994).

    Article  CAS  Google Scholar 

  22. Clodi, E., Semrad, K. & Schroeder, R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J. 18, 3776–3782 (1999).

    Article  CAS  Google Scholar 

  23. Tsuchihashi, Z. & Brown, P. DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J. Virol. 68, 5863–5870 (1994).

    CAS  PubMed Central  Google Scholar 

  24. Rein, A., Henderson, L. E. & Levin, J. G. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem. Sci. 23, 297–301 (1998).

    Article  CAS  Google Scholar 

  25. You, J. C. & McHenry, C. S. HIV nucleocapsid protein. J. Biol. Chem. 268, 16519–16527 (1993).

    CAS  Google Scholar 

  26. Negroni, M. & Buc, H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc. Natl Acad. Sci. USA 97, 6385–6390 (2000).

    Article  CAS  Google Scholar 

  27. Jetzt, A. E. et al. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol. 74, 1234–1240 (2000).

    Article  CAS  Google Scholar 

  28. Suo, Z. & Johnson, K. A. RNA secondary structure switching during DNA synthesis catalysed by HIV-1 reverse transcriptase. Biochemistry 36, 14778–14785 (1997).

    Article  CAS  Google Scholar 

  29. Schierup, M. H. & Hein, J. Consequences of recombination on traditional phylogenetic analysis. Genetics 156, 879–891 (2000).

    CAS  PubMed Central  Google Scholar 

  30. Zhang, J. & Temin, H. M. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259, 234–238 (1993).

    Article  CAS  Google Scholar 

  31. Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455 (1990).

    Article  CAS  Google Scholar 

  32. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).

    Article  Google Scholar 

  33. Xiong, Y. & Eickbush, T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  Google Scholar 

  34. Coffin, J. M. in Fields Virology (eds Fields, B. N. et al.) 1437–1500 (Raven Press, New York, 1990).

    Google Scholar 

  35. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. & Steitz, T. A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 (1992).

    Article  CAS  Google Scholar 

  36. Furfine, E. S. & Reardon, J. E. Reverse transcriptase. RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J. Biol. Chem. 266, 406–412 (1991).

    CAS  Google Scholar 

  37. Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl Acad. Sci. USA 90, 6320–6324 (1993).

    Article  CAS  Google Scholar 

  38. Huang, H., Chopra, R., Verdine, G. L. & Harrison, S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998).

    Article  CAS  Google Scholar 

  39. Levin, H. L. It's prime time for reverse transcriptase. Cell 88, 5–8 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the French Agency for Research on AIDS (ANRS) for financial support. We are also indebted to M. Ricchetti for constant and helpful discussions, and to T. Heidmann for his help in elaborating concepts on the biology of retroelements.

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Retroviral replication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negroni, M., Buc, H. Retroviral recombination: what drives the switch?. Nat Rev Mol Cell Biol 2, 151–155 (2001). https://doi.org/10.1038/35052098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing