Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enzymes for chemical synthesis

Abstract

New catalytic synthetic methods in organic chemistry that satisfy increasingly stringent environmental constraints are in great demand by the pharmaceutical and chemical industries. In addition, novel catalytic procedures are necessary to produce the emerging classes of organic compounds that are becoming the targets of molecular and biomedical research. Enzyme-catalysed chemical transformations are now widely recognized as practical alternatives to traditional (non-biological) organic synthesis, and as convenient solutions to certain intractable synthetic problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Practical parameters to be considered in enzymatic synthesis.
Figure 2: Enzyme-catalysed enantiotransformation.
Figure 3: Cofactor regeneration.
Figure 4: Monooxygenase-catalysed reaction.
Figure 5: Enzymatic synthesis of glycoproteins.
Figure 6: A representative chemoenzymatic preparation of cyclic imine sugars.
Figure 7
Figure 8

Similar content being viewed by others

Elizabeth L. Bell, William Finnigan, … Sabine L. Flitsch

References

  1. Jones, J. B. Enzymes in organic synthesis. Tetrahedron 42, 3351–3403 (1986).

    Article  CAS  Google Scholar 

  2. Sih, C. J. & Wu, S. H. Resolution of enantiomers via biocatalysis . Topics Stereochem. 19, 63– 125 (1989).

    CAS  Google Scholar 

  3. Wong, C.-H. & Whitesides, G. M. Enzymes in Synthetic Organic Chemistry (Pergamon, Oxford, 1994).

    Google Scholar 

  4. Drauz, K. & Waldmann, H. Enzyme Catalysis in Organic Synthesis (Wiley, Weinheim, 1995).

    Book  Google Scholar 

  5. Wong, C.-H., Halcomb, R. L., Ichikawa, Y. & Kajimoto, T. Enzymes in organic synthesis: application to the problems of carbohydrate recognition. Parts 1 and 2. Angew. Chem. Int. Edn Engl. 34, 412–432; 521– 546 (1995).

    Article  CAS  Google Scholar 

  6. Schoffers, E., Golebiowski, A. & Johnson, C. R. Enantioselective synthesis through enzymatic asymmetrization . Tetrahedron 52, 3769– 3826 (1996).

    Article  CAS  Google Scholar 

  7. Faber, K. Biotransformations in Organic Chemistry 3rd edn (Springer, Berlin, 1997).

    Book  Google Scholar 

  8. Klibanov, A. M. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15, 97–101 (1997).

    Article  CAS  Google Scholar 

  9. Schmid, R. D. & Verger, R. Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Edn Engl. 37, 1608–1633 (1998).

    Article  Google Scholar 

  10. Zaks, A. & Dodds, D. R. Biotransformations in the discovery and development of pharmaceuticals. Curr. Opin. Drug. Discov. Dev. 1, 290–303 ( 1998).

    CAS  Google Scholar 

  11. Roberts, S. M. Biocatalysis for Fine Chemicals Synthesis (Wiley, Weinheim, 1999).

    Google Scholar 

  12. Sugai, T. Application of enzyme- and microorganism-catalyzed reactions to organic synthesis . Curr. Org. Chem. 3, 373– 406 (1999).

    Article  CAS  Google Scholar 

  13. Carrea, G. & Riva, S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Edn Engl. 39, 2226–2254 (2000).

    Article  CAS  Google Scholar 

  14. Machajewski, T. D. & Wong, C.-H. The catalytic asymmetric aldol reaction. Angew. Chem. Int. Edn Engl. 39, 1352–1374 (2000).

    Article  CAS  Google Scholar 

  15. Fang, C.-M. & Wong, C.-H. Enzymes in organic synthesis: alteration of reversible reactions to irreversible processes. Synlett 6, 393–402 (1994).

    Article  Google Scholar 

  16. Kazlauskas, R. J. Molecular modeling and biocatalysis: explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4, 81–88 (2000).

    Article  CAS  Google Scholar 

  17. Um, P.-J. & Drueckhammer, D. G. Dynamic enzymatic resolution of thioesters. J. Am. Chem. Soc. 120, 5605 –5610 (1998).

    Article  CAS  Google Scholar 

  18. Persson, B. A., Larsson, A. L. E., Le Ray, M. & Backvall, J.-E. Ruthenium- and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols . J. Am. Chem. Soc. 121, 1645– 1650 (1999).

    Article  CAS  Google Scholar 

  19. Takayama, S., Lee, S. T., Hung, S.-C. & Wong, C.-H. Designing enzymatic resolution of amines. Chem. Commun. 127– 128 (1999).

  20. Pathak, T. & Waldmann, H. Enzymes and protecting group chemistry . Curr. Opin. Chem. Biol. 2, 112– 120 (1998).

    Article  CAS  Google Scholar 

  21. Bader, B. et al. Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 403, 223– 226 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Kren, V. & Thiem, J. A multienzyme system for a one-pot synthesis of sialyl T-antigen. Angew. Chem. Int. Edn Engl. 34, 893–895 (1995).

    Article  CAS  Google Scholar 

  23. Burkart, M. D., Izumi, M. & Wong, C.-H. Enzymatic regeneration of 3′-phosphoadenosine-5′-phosphosulfate using aryl sulfotransferase for the preparative enzymatic synthesis of sulfated carbohydrates. Angew. Chem. Int. Edn Engl. 38, 2747–2750 (1999).

    Article  CAS  Google Scholar 

  24. DeLuca, C. et al. Enzymatic synthesis of hyaluronic acid with regeneration of sugar nucleotides. J. Am. Chem. Soc. 117, 5869–5870 (1995).

    Article  CAS  Google Scholar 

  25. Gilbert, M. et al. The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/sialyltransferase fusion. Nature Biotechnol. 16, 769–772 (1998).

    Article  CAS  Google Scholar 

  26. Wang, J.-Q. et al. Enhanced inhibition of human anti-gal antibody binding to mammalian cells by synthetic α-gal epitope polymers. J. Am. Chem. Soc. 121, 8174–8181 (1999).

    Article  CAS  Google Scholar 

  27. Endo, T., Koizumi, S., Tabata, K. & Ozaki, A. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl. Microbiol. Biotechnol. 53, 257– 261 (2000).

    Article  CAS  Google Scholar 

  28. Noguchi, T. & Shiba, T. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci. Biotechnol. Biochem. 62, 1594–1596 ( 1998).

    Article  CAS  Google Scholar 

  29. Qian, X., Sujino, K., Otter, A., Palcic, M. M. & Hindsgaul, O. Chemoenzymatic synthesis of α(1,3)-Gal(NAc)-terminating glycosides of complex tertiary sugar alcohols. J. Am. Chem. Soc. 121, 12063–12072 ( 1999).

    Article  CAS  Google Scholar 

  30. Nishida, Y., Tamakoshi, H., Kitagawa, Y., Kobayashi, K. & Thiem, J. A novel β-1,4-galactosyltransferase reaction to yield β-d-galactopyranosyl-(1-3)-linked disaccharides from l-sugars. Angew. Chem. Int. Edn Engl. 39, 2000–2003 (2000).

    Article  CAS  Google Scholar 

  31. Tsuruta, O., Shinohara, G., Yuasa, H. & Hashimoto, H. UDP-N-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg. Med. Chem. Lett. 7, 2523–2526 (1997).

    Article  CAS  Google Scholar 

  32. Watt, G. M., Revers, L., Webberly, M. C., Wilson, I. B. H. & Flitsch, S. L. Efficient enzymatic synthesis of the core trisaccharide of N-glycans with a recombinant β-mannosyltransferase . Angew. Chem. Int. Edn Engl. 36, 2354– 2356 (1997).

    Article  CAS  Google Scholar 

  33. Stein, A., Kula, M.-R. & Elling, L. Combined preparative enzymatic synthesis of dTDP-6-deoxy-4-keto- d-glucose from dTDP and sucrose. Glycoconjugate J. 15, 139–145 (1998).

    Article  CAS  Google Scholar 

  34. Joo, H., Lin, Z. & Arnold, F. H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670– 673 (1999).

    Article  ADS  CAS  Google Scholar 

  35. Stewart, J. D. et al. Recombinant baker's yeast as a whole-cell catalyst for asymmetric Baeyer-Villiger oxidations. J. Am. Chem. Soc. 120, 3541–3548 (1998).

    Article  CAS  Google Scholar 

  36. Burzlaff, N. I. et al. The reaction cycle of isopenicillin N-synthase observed by X-ray diffraction. Nature 401, 721– 724 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution . Science 287, 1615–1622 (2000).

    Article  ADS  CAS  Google Scholar 

  38. Elliott, S. J. et al. Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus. J. Am. Chem. Soc. 119, 9949–9955 (1997).

    Article  CAS  Google Scholar 

  39. Rosenzweig, A. C., Nordlund, P., Takahara, P. M., Frederick, C. A. & Lippard, S. J. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chem. Biol. 2, 409–418 ( 1995).

    Article  CAS  Google Scholar 

  40. Gavagan, J. E. et al. Glyoxylic acid production using microbial transformant catalysts . J. Org. Chem. 60, 3957– 3963 (1995).

    Article  CAS  Google Scholar 

  41. Lakner, F. J., Cain, K. P. & Hager, L. P. Enantioselective epoxidation of ω-bromo-2-methyl-1-alkenes catalyzed by chloroperoxidase. Effect of chain length on selectivity and efficiency . J. Am. Chem. Soc. 119, 443– 444 (1999).

    Article  Google Scholar 

  42. van Deurzen, M. P., van Rantwijk, F. & Sheldon R. A. Selective oxidation catalyzed by peroxidases. Tetrahedron 53, 13183–13220 (1997).

    Article  CAS  Google Scholar 

  43. Margolia, A. L. Cross-linked enzyme crystals as novel materials for catalysis and chromatography . Chimia 50, 670–673 (1999).

    Google Scholar 

  44. Haring, D. & Schreier, P. Novel biocatalysts by chemical modification of known enzymes: cross-linked microcrystals of the semisynthetic peroxidase seleno-subtilisin. Angew. Chem. Int. Edn Engl. 37, 2471–2473 (1998).

    Article  CAS  Google Scholar 

  45. Guo, Z.-w., Salamonczyk, G. M., Han, K., Machiya, K. & Sih, C. J. Enzymatic oxidative phenolic coupling . J. Org. Chem. 62, 6700– 6701 (1997).

    Article  CAS  Google Scholar 

  46. Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E. & Amzel, L. M. Amidation of bioactive peptides: the structure of peptidylglycine α-hydroxylating monooxygenase. Science 278, 1300–1305 ( 1997).

    Article  ADS  CAS  Google Scholar 

  47. Hudlicky, T. et al. Toluene dioxygenase-mediated cis-hydroxylation of aromatics in enantioselective synthesis. Asymmetric total syntheses of pancratistatin and 7-deoxypancratistatin, promising antitumor agents. J. Am. Chem. Soc. 118, 10752–10765 ( 1996).

    Article  CAS  Google Scholar 

  48. Liu, J.-Q., Kurihara, T., Miyagi, M., Esaki, N. & Soda, K. Reaction mechanism of l-2-haloacid dehalogenase of Pseudomonas sp. YL. J. Biol. Chem. 270, 18309– 18312 (1995).

    Article  CAS  Google Scholar 

  49. Bordusa, F., Ullman, D., Elsner, C. & Jakubke, H.-D. Substrate mimetic mediated peptide synthesis: an irreversible ligation strategy that is independent of substrate specificity. Angew. Chem. Int. Edn Engl. 36, 2473–2475 (1997).

    Article  CAS  Google Scholar 

  50. Plettner, E., DeSantis, G., Stabile, M. & Jones, J. B. Modulation of esterase and amidase activity of subtilisin Bacillus lentus by chemical modification of cysteine mutants. J. Am. Chem. Soc. 121, 4977–4981 ( 1999).

    Article  CAS  Google Scholar 

  51. Witte, K., Seitz, O. & Wong, C.-H. Solution- and solid-phase synthesis of N-protected peptide esters of the benzyl type as substrates for subtilisin-catalyzed glycopeptide coupling. J. Am. Chem. Soc. 120, 1979– 1989 (1998).

    Article  CAS  Google Scholar 

  52. Jackson, D. Y. et al. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 266, 243–247 (1994).

    Article  ADS  CAS  Google Scholar 

  53. Kidd, R. D. et al. Breaking the low barrier hydrogen bond in a serine protease . Protein Sci. 8, 410–417 (1999).

    Article  CAS  Google Scholar 

  54. Tolbert, T. J. & Wong, C.-H. Intein-mediated synthesis of proteins containing carbohydrates and other molecular probes . J. Am. Chem. Soc. 122, 5421– 5428 (2000).

    Article  CAS  Google Scholar 

  55. Wang, L.-X. et al. Combined chemical and enzymatic synthesis of a C-glycopeptide and its inhibitory activity toward glycoamidases. J. Am. Chem. Soc. 119, 11137–11146 ( 1997).

    Article  CAS  Google Scholar 

  56. Mackenzie, L. F., Wang, Q., Warren, R. A. J. & Withers, S. G. Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc. 120, 5583–5584 (1998).

    Article  CAS  Google Scholar 

  57. Fort, S. et al. Highly efficient synthesis of β(1,4)-oligo- and polysaccharides using a mutant cellulase. J. Am. Chem. Soc. 122, 5429–5437 (2000).

    Article  CAS  Google Scholar 

  58. Kobayashi, S., Kiyosada, T. & Shoda, S.-i. Synthesis of artificial chitin: irreversible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate . J. Am. Chem. Soc. 118, 13113– 13114 (1996).

    Article  CAS  Google Scholar 

  59. Kimura, T., Takayama, S., Huang, H. & Wong, C.-H. A practical method for the synthesis of N-acetyl-d-lactosamine derivatives by the tandem use of galactose oxidase and β-galactosidase. Angew. Chem. Int. Edn Engl. 35, 2348– 2350 (1996).

    Article  CAS  Google Scholar 

  60. Nishimura, S.-I. & Yamada, K. Transfer of ganglioside GM3 oligosaccharide from a water soluble polymer to ceramide by ceramide glycanase. A novel approach for the chemical-enzymatic synthesis of glycosphingolipids . J. Am. Chem. Soc. 119, 10555– 10556 (1997).

    Article  CAS  Google Scholar 

  61. Zannetti, M. T., Walter, C., Knorst, M. & Fessner, W.-D. Fructose-1,6-bisphosphate aldolase from Staphylococcus carnosus: overexpression, structure prediction, stereoselectivity, and application in the synthesis of bicyclic sugars. Chem. Eur. J. 5, 1882–1890 (1999).

    Article  CAS  Google Scholar 

  62. Shelton, M. C. et al. 2-Keto-3-deoxy-6-phosphogluconate aldolases as catalysts for stereocontrolled carbon-carbon bond formation. J. Am. Chem. Soc. 118, 2118–2125 ( 1996).

    Article  Google Scholar 

  63. Miyazaki, T., Sato, H., Sakakibara, T. & Kajihara, Y. An approach to the precise chemoenzymatic synthesis of 13C-labeled sialyloligosaccharide on an intact glycoprotein: a novel one-pot [3-13C]-labeling method for sialic acid analogues by control of the reversible aldolase reaction, enzymatic synthesis of [3-13C]-NeuAc-α-(2,3)-[U-13C]-Gal-β-(1,4)-GlcNAc-β- sequence onto glycoprotein, and its conformational analysis by developed NMR techniques. J. Am. Chem. Soc. 122, 5678–5694 (2000).

    Article  CAS  Google Scholar 

  64. Li, K. & Frost, J. W. Synthesis of vanillin from glucose . J. Am. Chem. Soc. 120, 10545– 10546 (1998).

    Article  CAS  Google Scholar 

  65. Hoffmann, T. et al. Aldolase antibodies of remarkable scope. J. Am. Chem. Soc. 120, 2768–2779 (1998).

    Article  CAS  Google Scholar 

  66. Arnold, F. H. Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).

    Article  CAS  Google Scholar 

  67. Reetz, M. T. & Jaeger, K.-E. Enantioselective enzymes for organic synthesis created by directed evolution. Chem. Eur. J. 6, 407–412 (2000).

    Article  CAS  Google Scholar 

  68. Fong, S., Machajewski, T. D., Mak, C. C. & Wong, C.-H. Directed evolution of d-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of d- and l-sugars . Chem. Biol. 7, 873–883 (2000).

    Article  CAS  Google Scholar 

  69. Janda, K. D. et al. Chemical selection for catalysis in combinatorial antibody libraries. Science 275, 945– 948 (1997).

    Article  CAS  Google Scholar 

  70. Jestin, J.-L., Kristensen, P. & Winter, G. A method for the selection of catalytic activity using phage display and proximity coupling. Angew. Chem. Int. Edn Engl. 38, 1124–1127 ( 1999).

    Article  CAS  Google Scholar 

  71. Cane, D. E., Walsh, C. T. & Khosla, C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63– 68 (1998).

    Article  CAS  Google Scholar 

  72. Shimizu, S., Ogawa, J., Kataoka, M. & Kobayashi, M. Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. Adv. Biochem. Eng. Biotechnol. 58 , 45–88 (1997).

    CAS  PubMed  Google Scholar 

  73. Schoemaker, H. E. et al. Application of enzymes in industrial organic synthesis. Chimia 51, 308–310 ( 1997).

    CAS  Google Scholar 

  74. Patel, R. N. Stereoselective Biocatalysis (Dekker, New York, 2000 ).

    Book  Google Scholar 

Download references

Acknowledgements

We thank P. Sears for assistance with figure preparation, and other co-workers whose names are listed in the references. We also extend apologies to those whose biocatalysis research was not cited owing to space constraints. This research was supported by the NIH and NSF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeller, K., Wong, CH. Enzymes for chemical synthesis. Nature 409, 232–240 (2001). https://doi.org/10.1038/35051706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051706

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing