Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Enabling the chemistry of life

A Corrigendum to this article was published on 14 June 2001

Abstract

Enzymes are the subset of proteins that catalyse the chemistry of life, transforming both macromolecular substrates and small molecules. The precise three-dimensional architecture of enzymes permits almost unerring selectivity in physical and chemical steps to impose remarkable rate accelerations and specificity in product-determining reactions. Many enzymes are members of families that carry out related chemical transformations and offer opportunities for directed in vitro evolution, to tailor catalytic properties to particular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse chemical reactions facilitated by biocatalysts.
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Peiser, G. et al. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc. Natl Acad. Sci. USA 81, 3059–3063 ( 1984).

    Article  ADS  CAS  Google Scholar 

  2. Sancar, A. Structure and function of DNA photolyase. Biochemistry 33, 2–9 (1994).

    Article  CAS  Google Scholar 

  3. Schofield, C. J. et al. Proteins of the penicillin biosynthesis pathway. Curr. Opin. Struct. Biol. 7, 857–864 (1997).

    Article  CAS  Google Scholar 

  4. Bertino, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994).

    Google Scholar 

  5. Gesteland, R., Atkins, J. & Cech, T. R. (eds) The RNA World 2nd edn (Cold Spring Harbor Laboratory Press, 1999).

    Google Scholar 

  6. Narlikar, G. J. & Herschlag, D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu. Rev. Biochem. 66, 19– 59 (1997).

    Article  CAS  Google Scholar 

  7. Sheppard, T. L., Ordoukhanian, P. & Joyce, G. F. A DNA enzyme with N-glycosylase activity. Proc. Natl Acad. Sci. 97, 7802–7807 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozyme. Nature 390, 96–100 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Cech, T. R. & Golden, B. L. in The RNA World 2nd edn (eds Gesteland, R., Atkins, J. & Cech, T. R.) 321– 349 (Cold Spring Harbor Laboratory Press, 1999).

    Google Scholar 

  10. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 ( 1995).

    Article  ADS  CAS  Google Scholar 

  11. Stryer, L. Biochemistry 4th edn (Freeman, San Francisco, 1995).

    Google Scholar 

  12. Patten, P. A. et al. The immunological evolution of catalysis. Science 271, 1086–1091 ( 1996).

    Article  ADS  CAS  Google Scholar 

  13. Wagner, J. A., Lerrner, R. A. & Barbas, C. F. III Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270, 1797–1800 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Smithrud, D. B. & Benkovic, S. J. The state of antibody catalysis. Curr. Opin. Biotechnol. 8, 459–466 (1997).

    Article  CAS  Google Scholar 

  15. Lippard, S. J. & Berg, J. M. Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994).

    Google Scholar 

  16. Walsh, C. T. & Orme-Johnson, W. H. Nickel enzymes. Biochemistry 26, 4901–4906 (1987).

    Article  CAS  Google Scholar 

  17. Watt, R. K. & Ludden, P. W. Nickel binding proteins. Cell Mol. Life Sci. 56, 604–625 (1999).

    Article  CAS  Google Scholar 

  18. Wong, C.-H. & Whitesides, G. M. Enzymes in Synthetic Organic Chemistry (Pergamon, Oxford, 1994).

    Google Scholar 

  19. Cane, D. (ed.) Thematic issue on polyketide and nonribosomal peptide synthases. Chem. Rev. 97, 2463–2705 (1997).

    Article  CAS  Google Scholar 

  20. Konz, D. & Marahiel, M. How do peptide synthetases generate structural diversity? Chem. Biol. 6, R34 –R38 (1999).

    Article  Google Scholar 

  21. Cane, D. E., Walsh, C. T. & Khosla, C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63– 68 (1998).

    Article  CAS  Google Scholar 

  22. Trauger, J., Kohli, R. M., Mootz, H., Marahiel, M. & Walsh, C. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215 –218 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Roach, P. L. et al. The crystal structure of isopenicillin N synthase, first of a new structural family of enzymes. Nature 375, 700–704 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Valegard, K. et al. Structure of a cephalosporin synthase. Nature 394, 805–809 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Que, L. One motif—many different reactions. Nature Struct. Biol. 7, 182–184 (2000).

    Article  CAS  Google Scholar 

  26. SinhaRoy, R., Milne, J., Belshaw, P., Gehring, A. & Walsh, C. Oxazole and thiazole peptide biosynthesis. Nat. Prod. Rep. 16, 249–263 (1999).

    Article  Google Scholar 

  27. Lewis, R. et al. Molecular mechanisms of drug inhibition of DNA gyrase. BioEssays 18, 661–671 ( 1996).

    Article  CAS  Google Scholar 

  28. Quadri, L. E., Keating, T. A., Patel, H. M. & Walsh, C. Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-2,4-bis-thiazoline synthetase activity from PchD, E and F. Biochemistry 38, 14941 –14954 (1999).

    Article  CAS  Google Scholar 

  29. Gehring, A., Mori, I., Perry, R. & Walsh, C. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637–11650 (1998).

    Article  CAS  Google Scholar 

  30. Babbit, P. C. et al. The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids. Biochemistry 35, 16489–16501 ( 1996).

    Article  Google Scholar 

  31. Gerlt, J. A. & Babbit, P. C. Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis. Curr. Opin. Chem. Biol. 2, 607–612 (1998).

    Article  CAS  Google Scholar 

  32. Hubbard, B. K. Functional and mechanistic investigations of enzymes in the enolase superfamily . Thesis, Univ. Illinois (2000)

  33. Tobin, M. B., Gustafsson, C. & Huisman, G. W. Directed evolution: the rational basis for irrational design. Curr. Opin. Struct. Biol. 10, 421 –427 (2000).

    Article  CAS  Google Scholar 

  34. Schmidt-Dannert, C., Umeno, D. & Arnold, F. Molecular breeding of carotenoid biosynthetic pathways . Nature Biotechnol. 18, 750– 753 (2000).

    Article  CAS  Google Scholar 

  35. Madison, L. L. & Huisman, G. J. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 21–53 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wackett, L. P. et al. Predicting microbial degradation pathways. Am. Soc. Microbiol. News 65, 87–94 (1999).

    Google Scholar 

  37. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A. & Khosla, C. Rational design of aromatic polyketide products by recombinant assembly of enzymatic subunits. Nature 375, 549– 554 (1995).

    Article  ADS  CAS  Google Scholar 

  38. Bizily, S. P., Rugh, C. L., Summers, A. O. & Meagher, R. B. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl Acad. Sci. USA 96, 6808– 6813 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Work cited from the author's laboratory has been supported by the National Institutes of Health. I thank B. Hubbard for drawing the artwork in figures 1 –7.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, C. Enabling the chemistry of life. Nature 409, 226–231 (2001). https://doi.org/10.1038/35051697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing