Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus

A Corrigendum to this article was published on 01 November 2001

Abstract

Staphylococcus aureus is a major human pathogen, the potency of which can be attributed to the regulated expression of an impressive array of virulence determinants. A key pleiotropic transcriptional regulator of these virulence factors is SarA, which is encoded by the sar (staphylococcal accessory regulator) locus1,2,3. SarA was characterized initially as an activator of a second virulence regulatory locus, agr, through its interaction with a series of heptad repeats (AGTTAAG) within the agr promoter4. Subsequent DNA-binding studies have revealed that SarA binds readily to multiple AT-rich sequences of variable lengths4,5,6,7,8,9,10,11. Here we describe the crystal structure of SarA and a SarA–DNA complex at resolutions of 2.50 Å and 2.95 Å, respectively. SarA has a fold consisting of a four-helix core region and ‘inducible regions’ comprising a β-hairpin and a carboxy-terminal loop. On binding DNA, the inducible regions undergo marked conformational changes, becoming part of extended and distorted α-helices, which encase the DNA. SarA recognizes an AT-rich site in which the DNA is highly overwound and adopts a D-DNA-like conformation by indirect readout. These structures thus provide insight into SarA-mediated transcription regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SarA dimer and SarA–DNA complex.
Figure 2: SarA inducible regions.
Figure 3: Conformation of SarA-bound DNA.
Figure 4: SarA–DNA contacts.
Figure 5: Fobs - Fcalc omit electron density maps in which the DNA has been omitted.

Similar content being viewed by others

References

  1. Projan, S. L. & Novickn, R. P. in Staphylococci in Human Disease (eds Cross, K. B. & Archer, G. L.) 55–81 (Churchill Livingstone, New York, 1997).

    Google Scholar 

  2. Cheung, A. L., Koomey, J. M., Butler, C. A., Projan, S. J. & Fischetti, V. A. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl Acad. Sci. USA 89, 6462 –6466 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Cheung, A. L. & Projan, S. J. Cloning and sequencing of sarA of Staphylococcus aureus, a gene required for expression of agr. J. Bacteriol. 176, 4168– 4172 (1994).

    Article  CAS  Google Scholar 

  4. Morfeldt, E., Tegmark, K. & Arvidson, S. Transcriptional control of the agr-dependent virulence gene regulator, RNAIII, in Staphylococcus aureus. Mol. Microbiol. 21, 1227–1237 (1996).

    Article  CAS  Google Scholar 

  5. Wolz, C. et al. Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Mol. Microbiol. 36, 230–243 (2000).

    Article  CAS  Google Scholar 

  6. Cheung, A. & Ying, P. Regulation of α- and β-hemolysins by the sar locus of Staphylococcus aureus. J. Bacteriol. 176, 580–585 ( 1994).

    Article  CAS  Google Scholar 

  7. Blevins, J. S., Gillaspy, A. F., Rechtin, T. M., Hurlbert, B. K. & Smeltzer, M. S. The staphylococcal accessory gene regulator (sar) represses transcription of the Staphylococcus aureus collagen adhesin gene (cna) in an agr-independent manner. Mol. Microbiol. 33, 317– 326 (1999).

    Article  CAS  Google Scholar 

  8. Gaskill, M. E. & Khan, S. A. Regulation of the enterotoxin B gene in Staphylococcus aureus. J. Biol. Chem. 263, 6276–6280 (1988).

    CAS  PubMed  Google Scholar 

  9. Manna, A. C., Bayer, M. G. & Cheung, A. L. Transcriptional analysis of different promoters in the sar locus in Staphylococcus aureus. J. Bacteriol. 180, 3828–3836 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chien, Y.-t., Manna, A., Projan, S. J. & Cheung, A. L. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J. Biol. Chem. 274, 37169–37176 (1999).

    Article  CAS  Google Scholar 

  11. Rechtin, T. M. et al. Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Mol. Microbiol. 33, 307–316 (1999).

    Article  CAS  Google Scholar 

  12. Holm, L. & Sander, C. Protein structure comparisons by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  13. Heinrichs, J. H., Bayer, M. G. & Cheung, A. L. Characterization of the sar locus and its interactions with agr in Staphylococcus aureus. J. Bacteriol. 178, 418–423 (1996).

    Article  CAS  Google Scholar 

  14. Lavery, R. & Sklenar, H. J. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. Biomol. Struct. Dynam. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  15. Saenger, W. Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Book  Google Scholar 

  16. Mahendrasingam, A. et al. Time-resolved X-ray diffraction studies of the B ↔ D structural transition in the DNA double helix. Science 233, 195–197 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Baxevanis, A. D. & Vinson, C. R. Interactions of coiled coils in transcription factors: where is the specificity? Curr. Opin. Genet. Dev. 3, 278–285 (1993).

    Article  CAS  Google Scholar 

  18. Pruss, G. & Drlica, K. DNA supercoiling and prokaryotic transcription. Cell 56, 521– 523 (1989).

    Article  CAS  Google Scholar 

  19. Record, M. T. Jr,, Reznikoff, W. S., Craig, M. L., McQuade, K. L. & Schlax, P. J. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 792–820 (ASM, Washington DC, 1996).

    Google Scholar 

  20. Oberto, J., Drlica, K. & Rouviere-Yaniv, J. Histones, HMG, HU, IHF: Meme combat. Biochemie 76, 901–908 ( 1994).

    Article  CAS  Google Scholar 

  21. Chan, P. F. & Foster, S. J. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus . J. Bacteriol. 180, 6232– 6241 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51– 58 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Collaborative computational project number 4. J. Appl. Crystallogr. D 50, 760 (1994).

    Article  Google Scholar 

  24. Furey, W. B. & Swaminathan, S. PHASE-95: a program package for the processing and analysis of diffraction data from macromolecules. In ;Methods in Enzymol. Vol. 277 (eds Carter, C. W. & Sweet, R. M.) 590–620 (Academic, Orlando, 1997).

    Google Scholar 

  25. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Tronrud, D. E., TenEyck, L. F. & Matthews, B. W. An efficient general purpose least-squares refinement program for macromolecular structures. Acta. Crystallogr. A 43, 489–501 (1985).

    Article  Google Scholar 

  27. Laskowski, R. A., MacArthur, M. W. & Thorton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  28. Howard, A. J., Nielson, C. & Xuong, N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 114, 452– 472 (1985).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K. & Honig, B. H. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. S. Smeltzer for his critical reading of this manuscript. Intensity data collected at the Stanford Synchrotron Radiation Laboratory (SSRL) was carried out under the SSRL biotechnology program, which is supported by the National Institutes of Health (NIH), National Center for Research Resources, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. M.A.S. is a Burroughs Wellcome Career Awardee. This work was supported by the NIH Oregon Health Sciences Foundation (R.G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Brennan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, M., Hurlburt, B. & Brennan, R. Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus. Nature 409, 215–219 (2001). https://doi.org/10.1038/35051623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051623

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing