Subjects

  • An Erratum to this article was published on 08 February 2001

Abstract

With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function1. As elementary constituents of cellular protein complexes and pathways, protein–protein interactions are key determinants of protein function. Here we have built a large-scale protein–protein interaction map of the human gastric pathogen Helicobacter pylori. We have used a high-throughput strategy of the yeast two-hybrid assay to screen 261 H. pylori proteins against a highly complex library of genome-encoded polypeptides2. Over 1,200 interactions were identified between H. pylori proteins, connecting 46.6% of the proteome. The determination of a reliability score for every single protein–protein interaction and the identification of the actual interacting domains permitted the assignment of unannotated proteins to biological pathways.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Fields, S. The future is function. Nature Genet. 15, 325–327 (1997).

  2. 2

    Fromont-Racine, M., Rain, J. C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet. 16, 277–282 (1997).

  3. 3

    Bartel, P. L., Roecklein, J. A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nature Genet. 12, 72–77 (1996).

  4. 4

    Flajolet, M. et al. A genomic approach of the hepatitis C virus generates a protein interaction map. Gene 242, 369– 379 (2000).

  5. 5

    McCraith, S., Holtzman, T., Moss, B. & Fields, S. Genome-wide analysis of vaccinia virus protein–protein interactions. Proc. Natl Acad. Sci. USA 97, 4879–4884 (2000).

  6. 6

    Ito, T. et al. Toward a protein–protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl Acad. Sci. USA 97, 1143–1147 ( 2000).

  7. 7

    Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

  8. 8

    Walhout, A. J. M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

  9. 9

    Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539– 547 (1997).

  10. 10

    Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 ( 2000).

  11. 11

    Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

  12. 12

    Moszer, I. The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis. FEBS Lett. 430, 28–36 (1998).

  13. 13

    Welch, M., Chinardet, N., Mourey, L., Birck, C. & Samama, J. P. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nature Struct. Biol. 5, 25–29 ( 1998).

  14. 14

    Cussac, V., Ferrero, R. L. & Labigne, A. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J. Bacteriol. 174, 2466–2473 (1992).

  15. 15

    Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).

  16. 16

    Skouloubris, S., Thiberge, J. M., Labigne, A. & De Reuse, H. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun. 66, 4517–4521 ( 1998).

  17. 17

    Weeks, D. L., Eskandari, S., Scott, D. R. & Sachs, G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastritic colonization. Science 287 , 482–485 (2000).

  18. 18

    Dong, Z., Onrust, R., Skangalis, M. & O'Donnell, M. DNA polymerase III accessory proteins. I. holA and holB encoding delta and delta′. J. Biol. Chem. 268, 11758– 11765 (1993).

  19. 19

    Liu, X. & Matsumura, P. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164, 81–84 ( 1995).

  20. 20

    Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98, 811– 824 (1999).

  21. 21

    Mooney, R. A. & Landick, R. RNA polymerase unveiled. Cell 98, 687–690 ( 1999).

  22. 22

    Vidal, M. & Legrain, P. Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res. 27, 919– 929 (1999).

  23. 23

    Ferrero, R. L., Cussac, V., Courcoux, P. & Labigne, A. Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J. Bacteriol. 174, 4212– 4217 (1992).

Download references

Acknowledgements

We thank M. Fromont-Racine, P. Glaser, A. Jacquier, A. Brunet and L. Decourty for their help at the launch of this project; M. Fejes, G. Conan and P. Desmoucelle for technical assistance; G. Boissy and J.-L. Divol for their help in software development; F. Colland for his contribution to the mapping of FliA interacting domain on the 3D structure of the core RNA polymerase; and S. Whiteside for a thorough and critical reading of the manuscript. We are very grateful to R. Benarous, J. Camonis, L. Daviet, M. Rosbash, A.D. Strosberg and S. Whiteside for many stimulating discussions. This work was supported by an interest-free loan from the ANVAR. P.L. is on leave from the CNRS.

Author information

Affiliations

  1. Hybrigenics SA, 180 avenue Daumesnil, Paris, 75012, France

    • Jean-Christophe Rain
    • , Luc Selig
    • , Véronique Battaglia
    • , Céline Reverdy
    • , Stéphane Simon
    • , Gerlinde Lenzen
    • , Fabien Petel
    • , Jérôme Wojcik
    • , Vincent Schächter
    • , Y. Chemama
    •  & Pierre Legrain
  2. Unité de Pathogénie Bactérienne des Muqueuses, Institut Pasteur, 25 rue du Dr Roux, Paris, 75724 Cedex 15, France

    • Hilde De Reuse
    •  & Agnès Labigne

Authors

  1. Search for Jean-Christophe Rain in:

  2. Search for Luc Selig in:

  3. Search for Hilde De Reuse in:

  4. Search for Véronique Battaglia in:

  5. Search for Céline Reverdy in:

  6. Search for Stéphane Simon in:

  7. Search for Gerlinde Lenzen in:

  8. Search for Fabien Petel in:

  9. Search for Jérôme Wojcik in:

  10. Search for Vincent Schächter in:

  11. Search for Y. Chemama in:

  12. Search for Agnès Labigne in:

  13. Search for Pierre Legrain in:

Corresponding author

Correspondence to Pierre Legrain.

Supplementary information

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/35051615

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.