Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fossil that fills a critical gap in avian evolution

Abstract

Despite the discoveries of well-preserved Mesozoic birds1,2,3,4,5, a key part of avian evolution, close to the radiation of all living birds (Aves), remains poorly represented6. Here we report on a new taxon from the Late Cretaceous locality of Ukhaa Tolgod, Mongolia7, that offers insight into this critically unsampled period. Apsaravis and the controversial alvarezsaurids8 are the only avialan9 taxa known from the continental deposits at Ukhaa Tolgod, which have produced hundreds of fossil mammals, lizards and other small dinosaurs7. The new taxon, Apsaravis ukhaana, is the best-preserved specimen of a Mesozoic ornithurine bird discovered in over a century. It provides data important for assessing morphological evolution across Avialae, with implications for, first, the monophyly of Enantiornithes and Sauriurae; second, the proposition that the Mesozoic sister taxa of extant birds, as part of an ‘ecological bottleneck’, inhabited exclusively near-shore and marine environments2; and third, the evolution of flight after its origin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Apsaravis ukhaana, holotype IGM 100/1017.
Figure 2: Apsaravis ukhaana, holotype IGM 100/1017.
Figure 3: Apsaravis ukhaana, holotype IGM 100/1017.
Figure 4: Strict consensus of five most parsimonious cladograms (length, 354; CI, 0.69; RI, 0.81; RC, 0.56) indicating the placement of Apsaravis ukhaana in an analysis (using PAUP*4.0b2a25) of 199 characters and 17 taxa (see Supplementary Information).

References

  1. 1

    Padian, K. & Chiappe, L. M. The early evolution of birds. Biol. Rev. 73, 1–42 (1998).

    Article  Google Scholar 

  2. 2

    Feduccia, A. The Origin and Evolution of Birds (Yale Univ. Press, New Haven, 1996).

    Google Scholar 

  3. 3

    Hou, L.-H. Mesozoic Birds of China (Taiwan Provincial Feng Huang Ku Bird Park, Nan Tou, 1997).

    Google Scholar 

  4. 4

    Hou, L.-H., Martin, L. D., Zhonghe, Z. & Feduccia, A. Early adaptive radiation of birds: evidence from fossils from northeastern China. Science 274, 1164– 1167 (1996)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Chiappe, L. M., Ji, S.-A., Ji, Q. & Norell, M. A. Anatomy and systematics of the Confuciusornithidae (Aves) from the Mesozoic of Northeastern China. Am. Mus. Novitates 242, 1– 89 (1999).

    Google Scholar 

  6. 6

    Clarke, J. A. & Chiappe, L. M. A new carinate bird from the Late Cretaceous of Patagonia (Argentina). Am. Mus. Novitates (in the press).

  7. 7

    Dashzeveg, D. et al. Unusual preservation in a new vertebrate assemblage from the Late Cretaceous of Mongolia. Nature 374, 446–449 (1995).

    ADS  Article  Google Scholar 

  8. 8

    Chiappe, L.M., Norell, M. A. & Clark, J. M. The skull of a relative of the stem-group bird Mononykus. Nature 392, 275– 278 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Gauthier, J. A. Saurischian monophyly and the origin of birds. Mem. Cal. Acad. Sci. 8, 1–55 ( 1986).

    Google Scholar 

  10. 10

    Marsh, O. C. Odontornithes: a Monograph on the Extinct Toothed Birds of North America (US Geological Exploration of the 40th Parallel, US Government Printing Office, Washington DC, 1880).

    Google Scholar 

  11. 11

    Chiappe, L. M. Late Cretaceous birds of southern South America: anatomy and systematics of Enantiornithes and Patagopteryx deferrariisi. Muenchner Geowissenschaften Abh. 30, 203–244 (1996).

    Google Scholar 

  12. 12

    Sanz, J. L., Chiappe, L. M. & Buscalioni, A. D. The osteology of Concornis lacustris (Aves: Enantiornithes) from the lower Cretaceous of Spain and a re-examination of its phylogenetic relationships. Am. Mus. Novitates 3133, 1–23 (1995).

    Google Scholar 

  13. 13

    Walker, C. New subclass of birds from the Cretaceous of South America. Nature 292, 51–53 ( 1981).

    ADS  Article  Google Scholar 

  14. 14

    Chiappe, L. M. Cretaceous avian remains from Patagonia shed new light on the early radiation of birds. Alcheringa 15, 333– 338 (1991).

    Article  Google Scholar 

  15. 15

    Chiappe, L. M. & Calvo, J. O. Neuquenornis volans, a new Enantiornithes (Aves) from the Upper Cretaceous of Patagonia (Argentina). J. Vertebr. Paleontol. 14, 230–246 (1994).

    Article  Google Scholar 

  16. 16

    Kurochkin, E. N. A New Enantiornithid of the Mongolian Late Cretaceous, and a General Appraisal of the Infraclass Enantiornithes (Aves) (Special Issue, Palaeontology Institute, Moscow, 1996).

    Google Scholar 

  17. 17

    Ostrom, J. H. The pectoral girdle and forelimb function of Deinonychus (Reptilia: Saurischia): a correction. Postilla 165, 1–11 (1974).

    Google Scholar 

  18. 18

    Molnar, R. An enantiornithine bird from the lower Cretaceous of Queensland, Australia. Nature 322, 736–738 (1986).

    ADS  Article  Google Scholar 

  19. 19

    Forester, C. A., Chiappe, L. M. & Sampson, S. D. The first Cretaceous bird from Madagascar. Science 382, 532–534 ( 1996).

    Google Scholar 

  20. 20

    Norell, M. A. & Makovicky, P. Important features of the dromaeosaur skeleton II: information from newly collected specimens of Velociraptor mongoliensis. Am. Mus. Novitates 3282, 1–44 (1999).

    Google Scholar 

  21. 21

    Martin, L. D. in Perspectives in Ornithology (eds Brush, A. H. & Clark, G. A.) 291–338 (Cambridge Univ. Press, New York, 1983).

    Book  Google Scholar 

  22. 22

    Ostrom, J. H. Some hypothetical stages in the evolution of avian flight. Smithsonian Contrib. Paleobio. 27, 1–21 (1976).

    Google Scholar 

  23. 23

    Vazquez, R. J. The automating skeletal and muscular mechanisms of the avian wing (Aves). Zoomorphology 114, 59– 71 (1994).

    Article  Google Scholar 

  24. 24

    Ostrom, J. H. Wing biomechanics and the origin of bird flight. N. Jb. Geol. Palaont. Abh. 195, 253–266 ( 1995).

    Article  Google Scholar 

  25. 25

    Swofford, P. L. PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4.0b2a (PPC). (Sinaur Associates, Sunderland, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank the Mongolian Academy of Sciences and the joint field parties of the MAS and AMNH. Comments from J. Gauthier, L. Chiappe, B. Creisler, S. Gatesy and P. Makovicky improved the manuscript. M. Ellison provided the figures. A. Davidson prepared the specimen. Support was provided by the Division of Paleontology and the Chapman Memorial Fund (AMNH), the Mercedes Benz Corporation, the National Science Foundation Graduate Fellowship and Yale University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julia A. Clarke.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Norell, M., Clarke, J. Fossil that fills a critical gap in avian evolution. Nature 409, 181–184 (2001). https://doi.org/10.1038/35051563

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing