Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago

Abstract

Granitoid gneisses and supracrustal rocks that are 3,800–4,000 Myr old are the oldest recognized exposures of continental crust1. To obtain insight into conditions at the Earth's surface more than 4 Gyr ago requires the analysis of yet older rocks or their mineral remnants. Such an opportunity is presented by detrital zircons more than 4 Gyr old found within 3-Gyr-old quartzitic rocks in the Murchison District of Western Australia2,3. Here we report in situ U–Pb and oxygen isotope results for such zircons that place constraints on the age and composition of their sources and may therefore provide information about the nature of the Earth's early surface. We find that 3,910–4,280 Myr old zircons have oxygen isotope (δ18O) values ranging from 5.4 ± 0.6‰ to 15.0 ± 0.4‰. On the basis of these results, we postulate that the 4,300-Myr-old zircons formed from magmas containing a significant component of re-worked continental crust that formed in the presence of water near the Earth's surface. These data are therefore consistent with the presence of a hydrosphere interacting with the crust by 4,300 Myr ago.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic geological map of the Erawondoo region, Western Australia, showing the location of quartz-pebble conglomerate sample JH992 containing detrital zircons more than 4 Gyr old.
Figure 2: Ion microprobe δ18O data for individual zircon spot analyses versus 207Pb/206Pb zircon age (Supplementary Information available at http://www.nature.com).

References

  1. 1

    Goodwin, A. M. Principles of Precambrian Geology (Academic, New York, 1996).

    Google Scholar 

  2. 2

    Froude, D. O. et al. Ion microprobe identification of 4100–4200 Myr old terrestrial zircons. Nature 304, 616– 618 (1983).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Nutman, A. P., Kinny, P. D., Compston, W. & Williams, I. S. SHRIMP U-Pb zircon geochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Res. 52, 275– 300 (1991).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Nelson, D. R., Robinson, B. W. & Myers, J. S. Complex geological histories extending for ≥4.0 Ga deciphered from xenocryst zircon microstructures. Earth Planet. Sci. Lett. 181, 89–102 ( 2000).

    ADS  CAS  Article  Google Scholar 

  6. 6

    DeLong, S. E. & Chatelain, C. Trace-element constraints on accessory-phase saturation in evolved MORB magma. Earth Planet. Sci. Lett. 101, 206–215 (1990).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Galer, S. J. G. & Goldstein, S. L. Early mantle differentiation and its thermal consequences. Geochim. Cosmochim. Acta 55, 227–239 ( 1991).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The Earth's earliest known crust: A geochronological and geochemical study of 3900–4200 Ma old zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 ( 1992).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Watson, E. B. & Cherniak, D. J. Oxygen diffusion in zircon. Earth Planet. Sci. Lett. 148, 527– 544 (1997).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Valley, J. W., Chiarenzelli, J. R. & McLelland, J. M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 126, 187– 206 (1994).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Myers, J. S. & Williams, I. R. Early Precambrian crustal evolution at Mt. Narryer, Western Australia. Precambrian Res. 27, 153–163 (1985).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Myers, J. S. Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western Australia. Precambrian Res. 38, 297– 307 (1988).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Maas, R. & McCulloch, M. T. The provenance of Archaean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons. Geochim. Cosmochim. Acta 55, 1915– 1932 (1991).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Paces, J. B. & Miller, J. D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota—geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J. Geophys. Res. 98, 13997–14013 ( 1993).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Quidelleur, X. et al. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet. J. Geophys. Res. 102, 2659–2679 (1997).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Schuhmacher, M., de Chambost, E., McKeegan, K. D., Harrison, T. M. & Migeon, H. in Secondary Ion Mass Spectrometry SIMS IX (eds Benninghoven, A. et al.) 919–922 (1994).

    Google Scholar 

  17. 17

    Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 133, 1– 11 (1998).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Mattey, D., Lowry, D. & Mcpherson, C. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128, 231– 241 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Harmon, R. S. & Hoefs, J. Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib. Mineral. Petrol. 120, 95–114 (1995).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Eiler, J. M. et al. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta 61, 2281– 2293 (1997).

    ADS  CAS  Article  Google Scholar 

  21. 21

    O'Neil, J. R. & Chappell, B. W. Oxygen and hydrogen isotope variations in the Berridale Batholith, Southeastern Australia. J. Geol. Soc. Lond. 133, 559–571 (1977).

    CAS  Article  Google Scholar 

  22. 22

    Taylor, H. P. & Sheppard, S. M. F. in Stable Isotopes in High Temperature Processes (eds Valley, J. W. et al.) Rev. Mineral. 16, 227–271 (Mineralogical Society of America, Washington DC, 1986).

    Book  Google Scholar 

  23. 23

    Chivas, A. R., Andrew, A. S., Sinha, A. K. & O'Neill, J. R. Geochemistry of Pliocene–Pleistocene oceanic arc plutonic complex, Guadalcanal. Nature 300, 139–143 (1982).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Longstaffe, F. J. & Schwarcz, H. P. 18O/16O of Archean clastic metasedimentary rocks: A petrogenetic indicator for Archean gneisses? Geochim. Cosmochim. Acta 41, 1303–1312 (1977).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Zheng, Y.-F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57, 1079– 1091 (1993).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Amelin, Y., Lee, D. C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252– 255 (1999).

    ADS  CAS  Article  Google Scholar 

  27. 27

    White, A. J. R. & Chappell, B. W. Ultrametamorphism and granitoid genesis. Tectonophysics 43, 7–22 (1977).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Halliday, A. Terrestrial accretion rates and the origin of the Moon. Earth Planet. Sci. Lett. 176, 17–30 ( 2000).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NASA and NSF. Technical assistance from C. D. Coath is gratefully appreciated. We thank S. Claesson and J. Valley for providing the zircon oxygen standards. We also thank A. Halliday and C. Miller for comments on the manuscript. We are grateful to the McTaggart family of Mt Narryer station and the Broad family of Milly Milly station, Western Australia, for their hospitality in the field. We acknowledge support from the Instrumentation and Facilities Program of the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Mojzsis.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mojzsis, S., Harrison, T. & Pidgeon, R. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178–181 (2001). https://doi.org/10.1038/35051557

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing