Letter | Published:

Observation of shear-induced nematic–isotropic transition in side-chain liquid crystal polymers

Naturevolume 409pages167171 (2001) | Download Citation



Flow-induced phase transitions are a fundamental (but poorly understood) property of non-equilibrium systems, and are also of practical importance for tuning the processing conditions for plastics, petroleum products, and other related materials21. Recognition that polymers may exhibit liquid crystal properties has led to the discovery of the first tailored side-chain liquid crystal polymers (SCLCPs), which are formed by inserting a spacer between the main polymer chain and the lateral mesogen liquid–crystalline graftings22. Subsequent research has sought to understand the nature of the coupling between the main polymer chain and the mesogens, with a view to obtaining better control of the properties of these tailored structures22. We show here that the parallel or perpendicular orientation of the mesogens with respect to the main chain can be reversed by the application of an external field produced by a shear flow, demonstrating the existence of an isotropic nematic phase transition in SCLCPs. Such a transition, which was theoretically predicted1,2 for low-molecular-weight liquid crystals but never observed, is shown to be a general property of SCLCPs too. We expect that these SCLCPs will prove to be good candidate systems for the experimental study of these non-equilibrium phenomena.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Olmsted, P. D. & Goldbart, P. Theory of nonequilibrium phase transition for nematic liquid crystals under shear flow. Phys. Rev. A 41, 4578–4581 ( 1990).

  2. 2

    Olmsted, P. D. & Goldbart, P. Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behaviour. Phys. Rev. A 46, 4966– 4997 (1992).

  3. 3

    Wang, X. J. & Warner, M. Theory of nematic comb-like polymers. J. Phys. A 20, 713–731 (1987).

  4. 4

    Noirez, L., Keller, P. & Cotton, J. P. On the structure and the chain conformation of side-chain liquid crystal polymer. Liq. Cryst. 18, 129–148 (1995).

  5. 5

    de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn, 66, 164 (Clarendon, Oxford, 1993).

  6. 6

    Noirez, L., Daoud-Aladine, A. & Boeffel, C. Scaling laws in side-chain liquid crystalline polymers. Phys. Rev. Lett. 80, 1453– 1456 (1998).

  7. 7

    Fourmeaux-Demange, V., Boué, F., Brûlet, A., Keller, P. & Cotton, J. P. Effect of the molecular weight on the whole conformation of a liquid crystalline comb-like polymer in its melt. Macromolecules 31, 801– 806 (1998).

  8. 8

    Reys, V. et al. Short-range-order effects in the isotropic phase of a side-chain polymeric liquid crystal. Phys. Rev. Lett. 61, 2340–2343 (1988).

  9. 9

    Schmitt, V., Lequeux, F., Pousse, A. & Roux, D. Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers. Langmuir 10, 955– 961 (1994).

  10. 10

    Berret, J. F., Roux, D. C., Porte, G. & Linder, P. Shear induced isotropic to nematic phase transition in equilibrium polymers. Europhys. Lett. 25, 521–526 ( 1994).

  11. 11

    Mather, P. T., Romo-Uribe, A., Han, C. D. & Kim, S. S. Rheo-optical evidence of a flow induced isotropic-nematic transition in a thermotropic liquid crystalline polymer. Macromolecules 30, 7977–7989 (1997).

  12. 12

    Pleiner, H. & Brand, H. R. Local rotational degrees of freedom in nematic liquid-crystalline side-chain polymers. Macromolecules 25, 895–901 ( 1992).

  13. 13

    Rubin, S. F., Kannan, R. M., Kornfield, J. A. & Boeffel, C. Effect of mesophase order and molecular weight on the dynamics of nematic and smectic side-group liquid-crystal polymers. Macromolecules 28, 3521–3530 ( 1995).

  14. 14

    Cappellaere, E., Berret, J. F., Decruppe, J. P. & Linder, P. Rheology, birefringence and small-angle neutron scattering in a charged micellar system: evidence of a shear induced phase transition. Phys. Rev. E 56, 1869–1878 ( 1997).

  15. 15

    Gleim, W. & Finkelmann, H. Effect of the spacer length on the mechanical coupling between network and nematic order. Makromol. Chem. 192, 2555–2579 ( 1991).

  16. 16

    Gallani, J. L., Hilliou, L. & Martinoty, P. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys. Rev. Lett. 72, 2109– 2112 (1994).

  17. 17

    Brand, H. R. & Kawasaki, K. Mode coupling theory of the isotropic-nematic transition in side-chain liquid crystalline polymers. J. Phys. II France 4, 543–548 ( 1994).

  18. 18

    Noirez, L. & Lapp, A. Steady-state shear experiments on a side-chain liquid-crystal polymer: determination of the polymer conformation and liquid-crystal structure. Phys. Rev. E 53, 6115–6120 (1996).

  19. 19

    Noirez, L. Shear-induced SA-SC transition in side-chain liquid-crystalline polymers. Phys. Rev. Lett. 84, 2164– 2167 (2000).

  20. 20

    Pieranski, P. & Guyon, E. Instability of certain flows in nematic liquids. Phys. Rev. A 9, 404– 417 (1974).

  21. 21

    Dealy, J. H. & Wisbrun, K. Melt Rheology and its Role in Plastics Processing (Van Nostrand Reinhold, New York, 1990).

  22. 22

    Finkelmann, H., Ringsdorf, H., Siol, W. & Wendorff, J. H. Model consideration and examples of enantiotropic liquid crystalline polymers. Makromol. Chem 179, 273 (1978).

  23. 23

    de Gemmes, P. G. Scaling Concepts in Polymer Physics 165, 224 (Cornell Univ. Press, 1979).

Download references


We thank P. Baroni for the construction of the shear devices and his technical help during the experiments.

Author information


  1. Laboratoire Léon Brillouin (CEA-CNRS), Gif-sur-Yvette Cédex, Ce-Saclay, 91191, France

    • Caroline Pujolle-Robic
    •  & Laurence Noirez


  1. Search for Caroline Pujolle-Robic in:

  2. Search for Laurence Noirez in:

Corresponding author

Correspondence to Laurence Noirez.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.