Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum metallicity in a two-dimensional insulator

Abstract

One of the most far-reaching problems in condensed-matter physics is to understand how interactions between electrons, and the resulting correlations, affect the electronic properties of disordered two-dimensional systems. Extensive experimental1,2,3,4,5,6 and theoretical7,8,9,10,11 studies have shown that interaction effects are enhanced by disorder, and that this generally results in a depletion of the density of electronic states. In the limit of strong disorder, this depletion takes the form of a complete gap12,13 in the density of states. It is known that this ‘Coulomb gap’ can turn a pure metal film that is highly disordered into a poorly conducting insulator14, but the properties of these insulators are not well understood. Here we investigate the electronic properties of disordered beryllium films, with the aim of disentangling the effects of the Coulomb gap and the underlying disorder. We show that the gap is suppressed by a magnetic field and that this drives the strongly insulating beryllium films into a low-temperature ‘quantum metal’ phase with resistance near the quantum resistance RQ = h/e2, where h is Planck's constant and e is the electron charge.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence.
Figure 2: Low-temperature magnetoresistance.
Figure 3: Tunnelling density of states.
Figure 4: Zero-bias tunnelling conductance.
Figure 5: Phase diagram.

Similar content being viewed by others

References

  1. Hsu, S.-Y. & Valles, J. M. Jr Electron tunneling into strongly disordered films: the influence of structure on e-e interactions. Phys. Rev. B 49, 16600– 16604 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Vaknin, A., Ovadyahu, Z. & Pollak, M. Evidence for interactions in nonergodic electronic transport. Phys. Rev. Lett. 81, 669– 672 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Nissim, M., Leareah, Y. & Rosenbaum, R. Dominating Coulomb-interaction effects in amorphous InxOy films. Phys. Rev. B 40, 6351–6355 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Bishop, D. J., Dynes, R. C. & Tsui, D. C. Magnetoresistance in Si metal-oxide-semiconductor field-effect transistors: Evidence of weak localization and correlation. Phys. Rev. B 26, 773–779 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Das Sarma, S. & Pinczuk, A. (eds) Perspectives in Quantum Hall Effects (Wiley, New York, 1997).

    Google Scholar 

  6. Kravchenko, S. V., Kravchenko, G. V., Furneaux, J. E., Pudalov, V. M. & D'Iorio, M. Possible metal-insulator transition at B = 0 in two dimensions. Phys. Rev. B 50, 8039–8042 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287– 337 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Altshuler, B. L., Aronov, A. G., Gershenson, M. E. & Sharvin, Yu. V. Quantum effects in disordered metal films. Sov. Sci. Rev. A Phys. 9, 223–353 ( 1987).

    Google Scholar 

  10. Belitz, D. & Kirkpatrick, T. R. The Anderson-Mott transition. Rev. Mod. Phys. 66, 261– 390 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Pastor, A. A. & Dobrosavljevic, V. Melting of the electron gas. Phys. Rev. Lett. 83, 4642– 4645 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, New York, 1984).

    Book  Google Scholar 

  13. Massey, J. G. & Lee, M. Electron tunneling study of Coulomb correlations across the metal-insulator transition in Si:B. Phys. Rev. Lett. 77, 3399–3402 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Butko, V. Yu., DiTusa, J. F. & Adams, P. W. Coulomb gap: How a metal film becomes an insulator. Phys. Rev. Lett. 84, 1543– 1546 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Gershenzon, M. E., Gubankov, V. N. & Falei, M. I. Effect of electron-electron interaction on state density in 2D Al films. Pis’ma Zh. Eksp. Teor. Fiz. 41, 435–439 (1985) [JETP Lett. 41, 535–538 (1985)].

    CAS  Google Scholar 

  16. Imry, Y. & Ovadyahu, Z. Density of states anomalies in disordered metal films. Phys. Rev. Lett. 49, 841–844 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Adams, P. W., Herron, P. & Meletis, E. I. First-order spin-paramagnetic transition and tri-critical point in ultrathin Be films. Phys. Rev. B 58, 2952–2955 (1998).

    Article  ADS  Google Scholar 

  18. Butko, V. Yu., DiTusa, J. F. & Adams, P. W. Tenfold magnetoconductance in a non-magnetic metal film. Phys. Rev. Lett. 85, 162– 165 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Tinkam, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

  20. Sood, B. R. Magnetic-field-dependent zero-bias anomaly in Al-oxide-Ga (granular) thin-film tunnel junctions. Phys. Rev. B 25, 6064– 6066 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. DiTusa, D. Browne, B. Shklovskii, V. Dobrosavljevic, I. Aleiner and B. Altshuler for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butko, V., Adams, P. Quantum metallicity in a two-dimensional insulator. Nature 409, 161–164 (2001). https://doi.org/10.1038/35051516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051516

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing