Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase

Abstract

Helical filaments driven by linear molecular motors are anticipated to rotate around their axis, but rotation consistent with the helical pitch has not been observed. 14S dynein1 and non-claret disjunctional protein (ncd)2 rotated a microtubule more efficiently than expected for its helical pitch, and myosin rotated an actin filament only poorly3. For DNA-based motors such as RNA polymerase, transcription-induced supercoiling of DNA4 supports the general picture of tracking along the DNA helix5. Here we report direct and real-time optical microscopy measurements of rotation rate that are consistent with high-fidelity tracking. Single RNA polymerase molecules attached to a glass surface rotated DNA for >100 revolutions around the right-handed screw axis of the double helix with a rotary torque of >5 pN nm. This real-time observation of rotation opens the possibility of resolving individual transcription steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observation of DNA rotation by RNA polymerase.
Figure 2: Time courses of bead rotation at various [NTP].
Figure 3: Comparison of rotation and transcription rates.

Similar content being viewed by others

References

  1. Vale, R. D. & Toyoshima, Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459–469 (1988).

    Article  CAS  Google Scholar 

  2. Walker, R. A., Salmon, E. D. & Endow, S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Sase, I., Miyata, H., Ishiwata, S. & Kinosita, K. Jr Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl Acad. Sci. USA 94, 5646– 5650 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Wang, J. C. & Lynch, A. S. Transcription and DNA supercoiling. Curr. Opin. Genet. Dev. 3, 764– 768 (1993).

    Article  CAS  Google Scholar 

  5. Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    Article  CAS  Google Scholar 

  6. Schafer, D. A., Gelles, J., Sheetz, M. P. & Landick, R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–448 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1999).

    Article  ADS  Google Scholar 

  8. Guthold, M. et al. Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys. J. 77, 2284–2294 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Davenport, R. J., Wuite, G. J. L., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497– 2500 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Kabata, H. et al. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262, 1561– 1563 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Harada, Y. et al. Single molecule imaging of RNA polymerase-DNA interactions in real time. Biophys. J. 76, 709– 715 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Levin, J. R., Krummel, B. & Chamberlin, M. J. Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at single template base. J. Mol. Biol. 196, 85– 100 (1987).

    Article  CAS  Google Scholar 

  13. Stryer, L. Biochemistry 4th edn (Freeman, New York, 1995).

    Google Scholar 

  14. Svoboda, K. & Block, S. M. Biological applications of optical tweezers. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  CAS  Google Scholar 

  15. Strick, T., Allemand, J.-F., Bensimon, D., Lavery, R. & Croquette, V. Phase coexistence in a single DNA molecule. Physica A 263, 392– 405 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 ( 1997).

    Article  ADS  CAS  Google Scholar 

  17. Yasuda, R., Noji, H., Kinosita, K. Jr & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117– 1124 (1998).

    Article  CAS  Google Scholar 

  18. DeRosier, D. J. The turn of the screw: the bacterial flagellar motor. Cell 93, 17–20 (1998).

    Article  CAS  Google Scholar 

  19. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Adachi, K. et al. Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc. Natl Acad. Sci. USA 97, 7243–7247 ( 2000).

    Article  ADS  CAS  Google Scholar 

  21. Kubori, T. & Shimamoto, N. A branched pathway in the early stage of transcription by Escherichia coli RNA polymerase. J. Mol. Biol. 256, 449–457 (1996).

    Article  CAS  Google Scholar 

  22. Studier, F. W. Gene 0·3 of bacteriophage T7 acts to overcome the DNA restriction system of the host. J. Mol. Biol. 94, 283–295 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Susa for help in transcription analysis; A. Ishihama, S. Ishiwata, G. W. Feigenson and members of Team 13 for comments; and H. Umezawa for laboratory management. This work was supported in part by Grants-in-Aid from Ministry of Education, Science, Sports and Culture of Japan, Hayashi Memorial Foundation for Female Natural Scientists, and an Academic Frontier Promotional Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshie Harada.

Supplementary information

41586_2001_BF35051126_MOESM1_ESM.doc

Analyses of transcription rates in solution (estimation by gel electrophoresis) and on individual RNAP molecules attached to a glass surface (estimation from the reduction in the range of brownian motion of the end bead).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, Y., Ohara, O., Takatsuki, A. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001). https://doi.org/10.1038/35051126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing