Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomere looping permits gene activation by a downstream UAS in yeast

Abstract

In yeast (Saccharomyces cerevisiae), transcriptional activators, such as Gal4 and Gal4–VP16, work ordinarily from sites located in the upstream activating sequence (UAS) positioned about 250 base pairs upstream of the transcription start site1. In contrast to their behaviour in mammalian cells, however, such activators fail to work when positioned at distances greater than 600–700 base pairs upstream2, or anywhere downstream3,4 of the gene. Here we show that, in yeast, a gene bearing an enhancer positioned 1–2 kilobases downstream of the gene is activated if the reporter is linked to a telomere, but not if it is positioned at an internal chromosomal locus. These observations are explained by the finding that yeast telomeres form back-folding, or looped, structures. Because yeast telomeric regions resemble the heterochromatin found in higher eukaryotes, these findings might also explain why transcription of some higher eukaryotic genes depends on their location in heterochromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere-linked reporter gene constructs and model of gene activation.
Figure 2: Overcoming TPE by an activator working from the downstream direction.
Figure 3: Dependence on telomere linkage for downstream activation.
Figure 4: SIR3-dependent downstream activation of a telomere-linked gene as assayed by mRNA levels.
Figure 5: Telomere looping as assayed by chromosomal immunopercipitation (ChIP).

Similar content being viewed by others

References

  1. Guarente, L., Yocum, R. R. & Gifford, P. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl Acad. Sci. USA 79, 7410–7414 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Keegan, L., Gill, G. & Ptashne, M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231, 699–704 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Guarente, L. & Hoar, E. Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the “TATA box”. Proc. Natl Acad. Sci. USA 81, 7860–7864 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Struhl, K. Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. Proc. Natl Acad. Sci. USA 81, 7865–7869 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  Google Scholar 

  6. Aparicio, O. M. & Gottschling, D. E. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8, 1133–1146 (1994).

    Article  CAS  Google Scholar 

  7. Aparicio, O. M., Billington, B. L. & Gottschling, D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287 (1991).

    Article  CAS  Google Scholar 

  8. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  Google Scholar 

  9. Boeke, J. D., LaCroute, F. & Fink, G. R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346 (1984).

    Article  CAS  Google Scholar 

  10. Wu, Y., Reece, R. J. & Ptashne, M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J. 15, 3951–3963 (1996).

    Article  CAS  Google Scholar 

  11. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Wakimoto, B. T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93, 321–324 (1998).

    Article  CAS  Google Scholar 

  13. Boivin, A. & Dura, J. M. In vivo chromatin accessibility correlates with gene silencing in Drosophila. Genetics 150, 1539–1549 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gottschling, D. E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl Acad. Sci. USA 89, 4062–4065 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell Biol. 16, 4349–4356 (1996).

    Article  CAS  Google Scholar 

  16. Turner, B. M., Birley, A. J. & Lavender, J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375–384 (1992).

    Article  CAS  Google Scholar 

  17. Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    Article  CAS  Google Scholar 

  18. Devlin, R. H., Bingham, B. & Wakimoto, B. T. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125, 129–140 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorsett, D. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr. Opin. Genet. Dev. 9, 505–514 (1999).

    Article  CAS  Google Scholar 

  20. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).

    Article  CAS  Google Scholar 

  21. Sandell, L. L., Gottschling, D. E. & Zakian, V. A. Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability. Proc. Natl Acad. Sci. USA 91, 12061–12065 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Bourns, B. D., Alexander, M. K., Smith, A. M. & Zakian, V. A. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell Biol. 18, 5600–5608 (1998).

    Article  CAS  Google Scholar 

  23. Alexander, C., Grueneberg, D. A. & Gilman, M. Z. Studying heterologous transcription factors in yeast. Methods Companion Methods Enzymol. 5, 147–155 (1993).

    Article  Google Scholar 

  24. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Kantrow for her technical assistance and G. Bryant for his help with the quantitative PCR analysis. We are grateful to J. V. Ravetch, Head, Laboratory of Molecular Genetics & Immunology, The Rockefeller University, for his support of D.d.B. and R.A.L. during this work. We also thank T. De Lange and M. Grunstein for comments on the manuscript. M.P. is a Ludwig Foundation Professor. This work was supported in part by NIH and a fellowship from the Norman and Rosita Winston Foundation (Z.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derik de Bruin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bruin, D., Zaman, Z., Liberatore, R. et al. Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409, 109–113 (2001). https://doi.org/10.1038/35051119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing