Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-motion and the perception of stationary objects

Abstract

One of the ways that we perceive shape is through seeing motion1,2,3. Visual motion may be actively generated (for example, in locomotion), or passively observed. In the study of the perception of three-dimensional structure from motion, the non-moving, passive observer in an environment of moving rigid objects has been used as a substitute1 for an active observer moving in an environment of stationary objects; this ‘rigidity hypothesis’ has played a central role in computational and experimental studies of structure from motion4,5. Here we show that this is not an adequate substitution because active and passive observers can perceive three-dimensional structure differently, despite experiencing the same visual stimulus: active observers' perception of three-dimensional structure depends on extraretinal information about their own movements. The visual system thus treats objects that are stationary (in an allocentric, earth-fixed reference frame) differently from objects that are merely rigid. These results show that action makes an important contribution to depth perception, and argue for a revision of the rigidity hypothesis to incorporate the special case of stationary objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli used in the experiments.
Figure 2: Results of experiment 1, averaged over subjects.
Figure 3: Results of experiment 2, averaged over subjects.

Similar content being viewed by others

References

  1. Wallach, H. & O'Connell, D. N. The kinetic depth effect. J. Exp. Psychol. 45, 205–217 (1953).

    Article  CAS  Google Scholar 

  2. Braunstein, M. L. Depth perception in rotating dot patterns. J. Exp. Psychol. Hum. Percept. Perf. 72, 415–420 (1962).

    Google Scholar 

  3. Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 210–211 (1973).

    Article  Google Scholar 

  4. Ullman, S. The Interpretation of Visual Motion (MIT Press, Cambridge, 1979).

    Book  Google Scholar 

  5. Koenderink, J. J. Optic flow. Vision Res. 26, 161–179 (1986).

    Article  CAS  Google Scholar 

  6. Rogers, B. & Graham, M. Motion parallax as an independent cue for depth perception. Perception 8, 125–134 (1979).

    Article  CAS  Google Scholar 

  7. Rogers, B. & Graham, M. Similarities between motion parallax and stereopsis in human depth perception. Vision Res. 22, 261–270 (1982).

    Article  CAS  Google Scholar 

  8. Rogers, S. & Rogers, B. J. Visual and nonvisual information disambiguate surfaces specified by motion parallax. Percept. Psychophys. 52, 446–452 (1992).

    Article  CAS  Google Scholar 

  9. Dijkstra, T. M., Cornilleau-Pérès, V., Gielen, C. C. & Droulez, J. Perception of three-dimensional shape from ego- and object-motion: comparison between small- and large-field stimuli. Vision Res. 35, 453–462 (1995).

    Article  CAS  Google Scholar 

  10. van Damme, W. J. & van de Grind, W. A. Non-visual information in structure-from-motion. Vision Res. 36, 3119–3127 (1996).

    Article  CAS  Google Scholar 

  11. Landy, M. S., Maloney, L. T., Johnston, E. B. & Young, M. Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res. 35, 389–412 (1995).

    Article  CAS  Google Scholar 

  12. Attneave, F. & Frost, R. The determination of perceived tridimensional orientation by minimum criteria. Percept. Psychophys. 6, 391–396 (1969).

    Article  Google Scholar 

  13. Longuet-Higgins, H. C. & Prazdny, K. The interpretation of a moving retinal image. Proc. R. Soc. Lond. B 208, 385–397 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Todd, J. T. Visual information about rigid and non-rigid motion: a geometric analysis. J. Exp. Psychol. Hum. Percept. Perf. 8, 238–252 (1982).

    Article  CAS  Google Scholar 

  15. Wallach, H., Weisz, A. & Adams, P. A. Circles and derived figures in rotation. Am. J. Psychol. 69, 48–59 (1956).

    Article  CAS  Google Scholar 

  16. Adelson, E. H. Rigid objects that appear highly non-rigid. Invest. Ophthal. Visual Sci. 26 (Suppl.), (1985).

  17. Sinha, P. & Poggio, T. Role of learning in three-dimensional form perception. Nature 384, 460–463 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Sparrow, J. E. & Stine, W. W. The perceived rigidity of rotating eight-vertex geometric forms: extracting nonrigid structure from rigid motion. Vision Res. 38, 541–556 (1998).

    Article  CAS  Google Scholar 

  19. Ames, A. Visual perception and the rotating trapezoidal window. Psychol. Monogr. 65, (1951).

    Article  Google Scholar 

  20. Ittelson, W. H. The Ames Demonstrations in Perception (Princeton Univ. Press, Princeton, 1952).

    Google Scholar 

  21. O'Brien, J. & Johnston, A. When texture takes precedence over motion in depth perception. Perception 29 437–452 (2000).

    Article  CAS  Google Scholar 

  22. Wade, N. J. & Hughes, P. Fooling the eyes: trompe l'oeil and reverse perspective. Perception 28, 1115–1119 (1999).

    Article  CAS  Google Scholar 

  23. Papathomas, T. V. See how they turn: Falso depth and motion in Hughes's reverspectives. Proc. SPIE 3959, 506–517 (2000).

    Article  ADS  Google Scholar 

  24. Gibson, J. J. The Ecological Approach to Visual Perception (Houghton-Mifflin, Boston, 1979).

    Google Scholar 

  25. Reinhardt-Rutland, A. H. Perceiving surface orientation: Pictorial information based on rectangularity can be overridden during observer motion. Perception 22, 335–341 (1993).

    Article  CAS  Google Scholar 

  26. Wallach, H. Perceiving a stable environment when one moves. Annu. Rev. Psychol. 38, 1–27 (1987).

    Article  CAS  Google Scholar 

  27. Ono, H. & Steinbach, M. J. Monocular steropsis with and without head movement. Percept. Psychophys. 48, 179–187 (1990).

    Article  CAS  Google Scholar 

  28. Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Panerai, F., Hanneton, S., Droulez, J. & Cornilleau-Pérès, V. A 6-dof device to measure head movements in active vision experiments: Geometric modeling and metric accuracy. J. Neurosci. Meth. 90, 97–106 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ehrette and P. Leboucher for designing and building the head tracker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Wexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wexler, M., Panerai, F., Lamouret, I. et al. Self-motion and the perception of stationary objects. Nature 409, 85–88 (2001). https://doi.org/10.1038/35051081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051081

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing