Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of the bilaterian larval foregut


Bilateria are subdivided into Protostomia and Deuterostomia1,2. Indirect development through primary, ciliary larvae occurs in both of these branches; however, the closing blastopore develops into mouth and anus in Protostomia and into anus only in Deuterostomia. Because of this important difference in larval gut ontogeny, the tube-shaped guts in protostome and deuterostome primary larvae are thought to have evolved independently2,3. To test this hypothesis, we have analysed the expression of brachyury, otx and goosecoid homologues in the polychaete Platynereis dumerilii4, which develops by means of a trochophora larva—the primary, ciliary larva prototypic for Protostomia2. Here we show that brachyury expression in the ventral portion of the developing foregut in Platynereis and also otx expression along ciliated bands in the mouth region of the trochophora larva parallels expression in primary larvae in Deuterostomia5,6,7,8,9. In addition, goosecoid expression in the foregut of Platynereis mirrors the function in higher Deuterostomia10. We present molecular evidence for the evolutionary conservation of larval foreguts and mouth regions of Protostomia and Deuterostomia. Our data indicate that Urbilateria, the common bilaterian ancestors, developed through a primary, ciliary larva that already possessed a tripartite tube-shaped gut.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Different ontogeny but similar body plans of Protostomia and Deuterostomia primary larvae as shown by similar expression of brachyury in the ventral developing foregut and otx in ciliary bands bordering the mouth region.
Figure 2: Expression of Pd-bra.
Figure 3: Expression of Pd-otx.
Figure 4: Expression of Pd-gsc.


  1. 1

    Willmer, P. Invertebrate Relationships (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  2. 2

    Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  3. 3

    Grobben, K. Die systematische Einteilung des Tierreichs. Verh. Zool. Bot. Ges. Wien 58, 491–511 (1908).

    Google Scholar 

  4. 4

    Dorresteijn, A. W. C., O'Grady, B., Fischer, A., Porchet-Henere, E. & Boilly-Marer, Y. Molecular specification of cell lines in the embryo of Platynereis (Annelida). Roux's Arch. Dev. Biol. 202, 264–273 (1993).

    Google Scholar 

  5. 5

    Shoguchi, E., Satoh, N. & Maruyama, Y. K. Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos. Mech. Dev. 82, 185–189 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Peterson, K. J., Cameron, R. A., Tagawa, K., Satoh, N. & Davidson, E. H. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126, 85–95 (1999).

    CAS  PubMed  Google Scholar 

  7. 7

    Tagawa, K., Humphreys, T. & Satoh, N. Novel pattern of Brachyury gene expression in hemichordate embryos. Mech. Dev. 75, 139–143 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Shoguchi, E., Harada, Y., Numakunai, T. & Satoh, N. Expression of the Otx gene in the ciliary bands during sea cucumber embryogenesis. Genesis 27, 58–63 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Harada, Y. et al. Developmental expression of the hemichordate otx ortholog. Mech. Dev. 91, 337–339 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Steinbeisser, H. & De Robertis, E. M. Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. C. R. Acad. Sci. 316, 959–971 (1993).

    CAS  Google Scholar 

  11. 11

    Kispert, A., Herrmann, B. G., Leptin, M. & Reuter, R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8, 2137–2150 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Woollard, A. & Hodgkin, J. The Caenorhabditis elegans fate-determining gene mab-9 encodes a T-box protein required to pattern the posterior hindgut. Genes Dev. 14, 596–603 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Kispert, A. & Herrmann, B. G. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12, 3211–3220 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Peterson, K. J., Cameron, R. A. & Davidson, E. H. Bilaterian origins: significance of new experimental observations. Dev. Biol. 219, 1–17 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Kusch, T. & Reuter, R. Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling. Development 126, 3991–4003 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Smith, J. Brachyury and the T-box genes. Curr. Opin. Genet. Dev. 7, 474–480 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Wilson, E. B. The cell-lineage of Nereis. A contribution to the cytogeny of the annelid body. J. Morphol. 6, 361–480 (1892).

    Article  Google Scholar 

  18. 18

    Wu, L. H. & Lengyel, J. A. Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. Development 125, 2433–2442 (1998).

    CAS  PubMed  Google Scholar 

  19. 19

    De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Arendt, D. & Nübler-Jung, K. Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech. Dev. 61, 7–21 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Hirth, F. & Reichert, H. Conserved genetic programs in insect and mammalian brain development. BioEssays 21, 677–684 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Hahn, M. & Jäckle, H. Drosophila goosecoid participates in neural development but not in body axis formation. EMBO J. 15, 3077–3084 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Goriely, A. et al. A functional homologue of goosecoid in Drosophila. Development 122, 1641–1650 (1996).

    CAS  PubMed  Google Scholar 

  24. 24

    Yasuo, H. & Satoh, N. Conservation of the developmental role of Brachyury in notochord formation in a urochordate, the ascidian Halocynthia roretzi. Dev. Biol. 200, 158–170 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Holland, P. W., Koschorz, B., Holland, L. Z. & Herrmann, B. G. Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121, 4283–4291 (1995).

    CAS  PubMed  Google Scholar 

  26. 26

    Haeckel, E. in Systematische Phylogenie. 2.Teil: Systematische Phylogenie der wirbellosen Thiere (Invertebrata). 259–347 (Georg Reimer, Berlin, 1896).

    Book  Google Scholar 

  27. 27

    De Robertis, E. M. Evolutionary biology. The ancestry of segmentation. Nature 387, 25–26 (1997).

    ADS  PubMed  Google Scholar 

  28. 28

    Arendt, D. & Nübler-Jung, K. Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309–2325 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Strimmer, K. & Von Haeseler, A. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl Acad. Sci. USA 94, 6815–6819 (1997).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Loosli, F., Köster, R. W., Carl, M., Krone, A. & Wittbrodt, J. Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech. Dev. 74, 159–164 (1998).

    CAS  Article  Google Scholar 

Download references


We thank A. A. W. Dorresteijn, F. Loosli and R. Rieger for discussions; S. Cohen, B. Hobmayer, T. Holstein, T.-E. Rusten and L. Teixeira for comments on the manuscript; and members of the Wittbrodt laboratory for support. cDNA libraries were provided by C. Heimann, University of Mainz. This work was supported by a fellowship from the European Molecular Biology Organisation (EMBO) (D.A.), and by grants from the Deutsche Forschungsgemeinschaft (DFG) Schwerpunkt “Evolution entwicklungsbiologischer Prozesse” (U.T. and J.W.).

Author information



Corresponding author

Correspondence to Joachim Wittbrodt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arendt, D., Technau, U. & Wittbrodt, J. Evolution of the bilaterian larval foregut. Nature 409, 81–85 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing