Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge

Abstract

The lateral flow of magma and ductile deformation of the lower crust along oceanic spreading axes has been thought to play a significant role in suppressing both mid-ocean ridge segmentation1,2 and variations in crustal thickness3,4. Direct investigation of such flow patterns is hampered by the kilometres of water that cover the oceanic crust, but such studies can be made on ophiolites5 (fragments of oceanic crust accreted to a continent). In the Oman ophiolite, small-scale radial patterns of flow have been mapped along what is thought to be the relict of a fast-spreading mid-ocean ridge5. Here we present evidence for broad-scale along-axis flow that has been frozen into the gabbro of the Troodos ophiolite in Cyprus (thought to be representative of a slow-spreading ridge axis). The gabbro suite of Troodos spans nearly 20 km of a segment of a fossil spreading axis, near a ridge–transform intersection6,7. We mapped the pattern of magma flow by analysing the rocks' magnetic fabric at 20 sites widely distributed in the gabbro suite, and by examining the petrographic fabric at 9 sites. We infer an along-axis magma flow for much of the gabbro suite, which indicates that redistribution of melt occurred towards the segment edge in a large depth range of the oceanic crust. Our results support the magma plumbing structure that has been inferred indirectly from a seismic tomography experiment on the slow-spreading Mid-Atlantic Ridge8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location maps and results of AMS.
Figure 2: The relation between magnetic fabric and photographic fabric.
Figure 3: Directions of AMS principal axes across the section of the layered gabbro in site L (Lagudhera).
Figure 4: Cross-section along the palaeo spreading axis of Troodos of a simplified model.

Similar content being viewed by others

References

  1. Bell, R. E. & Buck, W. R. Crustal control of ridge segmentation inferred from observations of the Reykjanes Ridge. Nature 357, 583–586 (1992).

    Article  ADS  Google Scholar 

  2. Abelson, M. & Agnon, A. Mechanics of oblique spreading and ridge segmentation. Earth Planet. Sci. Lett. 148, 405–421 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Lin, J. & Phipps-Morgan, J. The spreading rate dependence of 3-D mid-ocean gravity structure. Geophys. Res. Lett. 19, 13–16 (1992).

    Article  ADS  Google Scholar 

  4. Wang, X. & Cochran, J. R. Along-axis gravity gradients at mid-ocean ridges: implications for mantle flow and axial morphology. Geology 23, 29–32 ( 1995).

    Article  ADS  Google Scholar 

  5. Nicolas, A. & Boudier, F. Mapping oceanic ridge segments in Oman ophiolite. J. Geophys. Res. 100, 6179 –6197 (1995).

    Article  ADS  Google Scholar 

  6. Hurst, S. D., Karson, J. A. & Moores, E. M. in Proc. Symp. “TROODOS 1987” on Ophiolites and Oceanic Crustal Analogues (eds Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos, C.) 125–130 (Geological Survey Dept, Ministry of Agriculture and Natural Resources of Cyprus, Nicosia, 1990).

    Google Scholar 

  7. MacLeod, C. J., Allerton, S., Gass, I. G. & Xenophontos, C. Structure of a fossil ridge-transform intersection in the Troodos ophiolite. Nature 348, 717–720 (1990).

    Article  ADS  Google Scholar 

  8. Magde, L. S., Barclay, A. H., Toomey, D. R., Detrick, R. S. & Collins, J. A. Crustal magma plumbing within a segment of the Mid-Atlantic Ridge, 35°N. Earth Planet. Sci. Lett. 175, 55–68 ( 2000).

    Article  ADS  CAS  Google Scholar 

  9. Solomon, S. C. & Toomey, D. R. The structure of mid-ocean ridges. Annu. Rev. Earth Planet. Sci. 20, 329– 364 (1992).

    Article  ADS  Google Scholar 

  10. Hurst, S. D., Moores, E. M. & Varga, R. J. Structural and geophysical expression of the Solea graben, Troodos Ophiolite, Cyprus. Tectonics 13, 139–156 (1994).

    Article  ADS  Google Scholar 

  11. Varga, R. J., Gee, J. S., Bettison-Varga, L., Anderson, R. S. & Johnson, C. L. Early establishment of seafloor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth Planet. Sci. Lett. 171, 221–235 (1999).

    Article  ADS  CAS  Google Scholar 

  12. George, R. P. Structural petrology of the Olympus ultramafic complex in the Troodos ophiolite, Cyprus. Geol. Soc. Am. Bull. 89, 845– 865 (1978).

    Article  ADS  Google Scholar 

  13. Malpas, J., Xenophontos, C. & Cann, J. R. in Third Int. Conf. on the Geology of the Eastern Mediterranean (Nicosia, Cyprus, 1998).

    Google Scholar 

  14. Malpas, J. in Proc. Symp. “TROODOS 1987” on Ophiolites and Oceanic Crustal Analogues (eds Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos, C.) 65–74 (Geological Survey Dept, Ministry of Agriculture and Natural Resources of Cyprus, Nicosia, 1990).

    Google Scholar 

  15. Rochette, P., Jackson, M. & Aubourg, C. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys. 30, 209–226 (1992).

    Article  ADS  Google Scholar 

  16. Ernst, R. E. & Baragar, W. R. A. Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356, 511–513 (1992).

    Article  ADS  Google Scholar 

  17. Hargraves, R. B., Johnson, D. & Chen, C. Y. Distribution anisotropy: The cause of AMS in igneous rocks? Geophys. Res. Lett. 18, 2193– 2196 (1991).

    Article  ADS  Google Scholar 

  18. Richter, C., Kelso, P. R. & MacLeod, C. J. Proc. ODP Sci. Res. 147, 393 –403 (1996).

    CAS  Google Scholar 

  19. Yaouancq, G. & MacLeod, C. J. Petrofabric investigation of gabbros from the Oman ophiolite: comparison between AMS and rock fabric. Mar. Geophys. Res. (in the press).

  20. Naslund, H. R. & McBirney, A. R. in Layered Intrusions (ed. Cawthorn, R. G.) 1–43 (Elsevier, Amsterdam, 1996).

    Book  Google Scholar 

  21. Benn, K. & Allard, B. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. J. Petrol. 30, 925–946 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Staudigel, H., Gee, J., Tauxe, L. & Varga, R. J. Shallow intrusive directions of sheeted dikes in the Troodos ophiolite: anisotropy of magnetic susceptibility and structural data. Geology 20, 841–844 (1992).

    Article  ADS  Google Scholar 

  23. Staudigel, H. et al. Geochemistry and intrusive directions in sheeted dikes in the Troodos ophiolite: implications for mid-ocean ridge spreading centers. Geochem. Geophys. Geosys. [online] 1, 1999GC000001 (1999).

    Google Scholar 

  24. Muller, M. R., Minshull, T. A. & White, R. S. Segmentation and melt supply at the South West Indian Ridge. Geology 27, 867– 870 (1999).

    Article  ADS  Google Scholar 

  25. Nicolas, A., Boudier, F. & Ildefonse, B. Variable crustal thickness in the Oman ophiolite: implication for oceanic crust. J. Geophys. Res. 101, 17,941–17,950 (1996).

    Article  ADS  Google Scholar 

  26. Phipps-Morgan, J. & Parmentier, E. M. Crenulated seafloor: evidence for spreading-rate dependent structure of mantle upwelling and melting beneath a mid-oceanic spreading center. Earth Planet. Sci. Lett. 129, 73–84 ( 1995).

    Article  ADS  Google Scholar 

  27. Mineral Resources Map of Cyprus (Geological Survey Dept, Ministry of Agriculture and Natural Resources of Cyprus, Nicosia, 1982).

  28. Tauxe, L. Paleomagnetic Principles and Practice (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  29. Malpas, J. & Brace, T. Geological Map of the Amiandos-Palekhori Area (Geological Survey Dept, Ministry of Agriculture and Natural Resources of Cyprus, Nicosia, Cyprus, and Center of Earth Resources Research, Memorial University of Newfoundland, Canada, 1987).

    Google Scholar 

  30. Jelinek, V. Characterization of the magnetic fabric of rocks. Tectonophysics 79, T63–T67 ( 1981).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Nicolas and J. Gee for comments and suggestions, and L. Tauxe for assistance with the statistical analysis. This research was supported by the US-Israel Binational Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Abelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abelson, M., Baer, G. & Agnon, A. Evidence from gabbro of the Troodos ophiolite for lateral magma transport along a slow-spreading mid-ocean ridge. Nature 409, 72–75 (2001). https://doi.org/10.1038/35051058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing