Letter | Published:

Computational design of direct-bandgap semiconductors that lattice-match silicon

Naturevolume 409pages6971 (2001) | Download Citation



Crystalline silicon is an indirect-bandgap semiconductor, making it an inefficient emitter of light. The successful integration of silicon-based electronics with optical components will therefore require optically active (for example, direct-bandgap) materials that can be grown on silicon with high-quality interfaces. For well ordered materials, this effectively translates into the requirement that such materials lattice-match silicon: lattice mismatch generally causes cracks and poor interface properties once the mismatched overlayer exceeds a very thin critical thickness. But no direct-bandgap semiconductor has yet been produced that can lattice-match silicon, and previously suggested structures1 pose formidable challenges for synthesis. Much recent work has therefore focused on introducing compliant transition layers between the mismatched components2,3,4. Here we propose a more direct solution to integrating silicon electronics with optical components. We have computationally designed two hypothetical direct-bandgap semiconductor alloys, the synthesis of which should be possible through the deposition of specific group-IV precursor molecules5,6 and which lattice-match silicon to 0.5–1% along lattice planes with low Miller indices. The calculated bandgaps (and hence the frequency of emitted light) lie in the window of minimal absorption in current optical fibres.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Wang, T., Moll, N., Cho, K. & Joannopoulos, J. D. Deliberately designed materials for optoelectronics applications. Phys. Rev. Lett. 82, 3304–3306 (1999).

  2. 2

    Ejeckam, F. E., Lo, Y. H., Subramanian, S., Hou, H. Q. & Hammons, B. E. Lattice engineered compliant substrate for defect-free heteroepitaxial growth. Appl. Phys. Lett. 70, 1685–1687 (1997).

  3. 3

    Lo, Y. H. New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2313 (1991).

  4. 4

    Powell, A. R., Iyer, S. S. & LeGoues, F. K. New approach to the growth of low dislocation relaxed SiGe material. Appl. Phys. Lett. 64, 1856–1858 (1994).

  5. 5

    Kouvetakis, J., Nesting, D. & Smith, D. J. Synthesis and atomic and electronic structure of new Si-Ge-C alloys and compounds. Chem. Mater. 10, 2935–1949 (1998).

  6. 6

    Kouvetakis, J., Chandrasekhar, D. & Smith, D. J. Growth and characterization of thin Si80C20 films based upon Si4C building blocks. Appl. Phys. Lett. 72, 930–932 (1998).

  7. 7

    Jenkins, D. W. & Dow, J. D. Electronic properties of metastable GexSn1-x alloys. Phys. Rev. B 36, 7994–8000 (1987).

  8. 8

    Mäder, K. A., Baldereschi, A. & von Känel, H. Band structure and instability of Ge1-xSnx alloys. Solid State Commun. 69, 1123–1126 (1989).

  9. 9

    He, G. & Atwater, H. A. Interband transitions in SnxGe1-x alloys. Phys. Rev. lett. 79, 1937–1940 (1997).

  10. 10

    Min, K. S. & Atwater, H. A. Ultrathin pseudomorphic Sn/Si and SnxSi1-x/Si heterostructures. Appl. Phys. Lett. 72, 1884–1886 (1998).

  11. 11

    Klinkhammer, K. W., Kühner, S., Regelmann, B. & Weidlein, J. Die Kristall- und Molekulstruktur von Tetrakis(trimethylstannyl)methan. Organomet. Chem. 496, 241–243 (1995).

  12. 12

    Schmidbaur, H. & Zech, J. An improved synthetic pathway to tetrasilyl methane and the synthesis of disilylpropane. Eur. J. Solid State Inorg. Chem. 29, 5–21 (1992).

  13. 13

    Kouvetakis, J. et al. Novel methods for CVD of Ge4C and (Ge4C)xSiy diamond-like semiconductor heterostructures: Synthetic pathways and structures of trigermyl-(GeH3)3CH and tetragermyl-(GeH3)4C methanes. J. Am. Chem. Soc. 120, 6738–6744 (1998).

  14. 14

    Ihm, J., Zunger, A. & Cohen, M. L. Momentum-space formalism for the total energy of solids. J. Phys. C 12, 4409–4423 (1979).

  15. 15

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

  16. 16

    Rücher, H., Metthfessel, M., Bugiel, E. & Osten, H. J. Strain-stabilized highly concentrated pseudomorphic Si1-xCx layers in Si. Phys. Rev. Lett. 72, 3578–3581 (1994).

  17. 17

    Herman, M. A. & Sitter, H. Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, Berlin/Heidelberg, 1989).

  18. 18

    Corkill, J. L. & Cohen, M. L. Band gaps in some group-IV materials: A theoretical analysis. Phys. Rev. B 47, 10304–10309 (1993).

  19. 19

    Cohen, M. L. & Chelikowsky, J. R. Electronic Structure and Optical Properties of Semiconductors (Springer, Berlin/Heidelberg, 1988).

Download references


V.H.C. thanks T. Mallouk and J. Kouvetakis for useful discussions and J. Kouvetakis for information on the stability of Sn-D3 moiety. V.H.C. acknowledges support from the Packard Foundation and from the National Science Foundation, Division of Materials Research. V.H.C. also acknowledges the National Partnership for Advanced Computational Infrastructure and the Pittsburgh Supercomputing Center for computational support. M.L.C. and S.G.L. acknowledge support from the National Science Foundation, Division of Materials Research and from the Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy.

Author information


  1. Department of Physics, The Pennsylvania State University, 104 Davey Lab, University Park, 16802-6300, Pennsylvania, USA

    • Peihong Zhang
    •  & Vincent H. Crespi
  2. Department of Physics, University of California at Berkeley, Berkeley, 94720, California

    • Eric Chang
    • , Steven G. Louie
    •  & Marvin L. Cohen
  3. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, 94720, California, USA

    • Eric Chang
    • , Steven G. Louie
    •  & Marvin L. Cohen


  1. Search for Peihong Zhang in:

  2. Search for Vincent H. Crespi in:

  3. Search for Eric Chang in:

  4. Search for Steven G. Louie in:

  5. Search for Marvin L. Cohen in:

Corresponding author

Correspondence to Vincent H. Crespi.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.