Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Computational design of direct-bandgap semiconductors that lattice-match silicon

Abstract

Crystalline silicon is an indirect-bandgap semiconductor, making it an inefficient emitter of light. The successful integration of silicon-based electronics with optical components will therefore require optically active (for example, direct-bandgap) materials that can be grown on silicon with high-quality interfaces. For well ordered materials, this effectively translates into the requirement that such materials lattice-match silicon: lattice mismatch generally causes cracks and poor interface properties once the mismatched overlayer exceeds a very thin critical thickness. But no direct-bandgap semiconductor has yet been produced that can lattice-match silicon, and previously suggested structures1 pose formidable challenges for synthesis. Much recent work has therefore focused on introducing compliant transition layers between the mismatched components2,3,4. Here we propose a more direct solution to integrating silicon electronics with optical components. We have computationally designed two hypothetical direct-bandgap semiconductor alloys, the synthesis of which should be possible through the deposition of specific group-IV precursor molecules5,6 and which lattice-match silicon to 0.5–1% along lattice planes with low Miller indices. The calculated bandgaps (and hence the frequency of emitted light) lie in the window of minimal absorption in current optical fibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed molecular precursors and the corresponding relaxed crystalline phases of the new group-IV compounds.
Figure 2: Band structures of novel group-IV alloys compared to that of silicon.

Similar content being viewed by others

References

  1. Wang, T., Moll, N., Cho, K. & Joannopoulos, J. D. Deliberately designed materials for optoelectronics applications. Phys. Rev. Lett. 82, 3304–3306 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Ejeckam, F. E., Lo, Y. H., Subramanian, S., Hou, H. Q. & Hammons, B. E. Lattice engineered compliant substrate for defect-free heteroepitaxial growth. Appl. Phys. Lett. 70, 1685–1687 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Lo, Y. H. New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2313 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Powell, A. R., Iyer, S. S. & LeGoues, F. K. New approach to the growth of low dislocation relaxed SiGe material. Appl. Phys. Lett. 64, 1856–1858 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Kouvetakis, J., Nesting, D. & Smith, D. J. Synthesis and atomic and electronic structure of new Si-Ge-C alloys and compounds. Chem. Mater. 10, 2935–1949 (1998).

    Article  CAS  Google Scholar 

  6. Kouvetakis, J., Chandrasekhar, D. & Smith, D. J. Growth and characterization of thin Si80C20 films based upon Si4C building blocks. Appl. Phys. Lett. 72, 930–932 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Jenkins, D. W. & Dow, J. D. Electronic properties of metastable GexSn1-x alloys. Phys. Rev. B 36, 7994–8000 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Mäder, K. A., Baldereschi, A. & von Känel, H. Band structure and instability of Ge1-xSnx alloys. Solid State Commun. 69, 1123–1126 (1989).

    Article  ADS  Google Scholar 

  9. He, G. & Atwater, H. A. Interband transitions in SnxGe1-x alloys. Phys. Rev. lett. 79, 1937–1940 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Min, K. S. & Atwater, H. A. Ultrathin pseudomorphic Sn/Si and SnxSi1-x/Si heterostructures. Appl. Phys. Lett. 72, 1884–1886 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Klinkhammer, K. W., Kühner, S., Regelmann, B. & Weidlein, J. Die Kristall- und Molekulstruktur von Tetrakis(trimethylstannyl)methan. Organomet. Chem. 496, 241–243 (1995).

    Article  CAS  Google Scholar 

  12. Schmidbaur, H. & Zech, J. An improved synthetic pathway to tetrasilyl methane and the synthesis of disilylpropane. Eur. J. Solid State Inorg. Chem. 29, 5–21 (1992).

    CAS  Google Scholar 

  13. Kouvetakis, J. et al. Novel methods for CVD of Ge4C and (Ge4C)xSiy diamond-like semiconductor heterostructures: Synthetic pathways and structures of trigermyl-(GeH3)3CH and tetragermyl-(GeH3)4C methanes. J. Am. Chem. Soc. 120, 6738–6744 (1998).

    Article  CAS  Google Scholar 

  14. Ihm, J., Zunger, A. & Cohen, M. L. Momentum-space formalism for the total energy of solids. J. Phys. C 12, 4409–4423 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Rücher, H., Metthfessel, M., Bugiel, E. & Osten, H. J. Strain-stabilized highly concentrated pseudomorphic Si1-xCx layers in Si. Phys. Rev. Lett. 72, 3578–3581 (1994).

    Article  ADS  Google Scholar 

  17. Herman, M. A. & Sitter, H. Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, Berlin/Heidelberg, 1989).

    Book  Google Scholar 

  18. Corkill, J. L. & Cohen, M. L. Band gaps in some group-IV materials: A theoretical analysis. Phys. Rev. B 47, 10304–10309 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Cohen, M. L. & Chelikowsky, J. R. Electronic Structure and Optical Properties of Semiconductors (Springer, Berlin/Heidelberg, 1988).

    Book  Google Scholar 

Download references

Acknowledgements

V.H.C. thanks T. Mallouk and J. Kouvetakis for useful discussions and J. Kouvetakis for information on the stability of Sn-D3 moiety. V.H.C. acknowledges support from the Packard Foundation and from the National Science Foundation, Division of Materials Research. V.H.C. also acknowledges the National Partnership for Advanced Computational Infrastructure and the Pittsburgh Supercomputing Center for computational support. M.L.C. and S.G.L. acknowledge support from the National Science Foundation, Division of Materials Research and from the Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent H. Crespi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Crespi, V., Chang, E. et al. Computational design of direct-bandgap semiconductors that lattice-match silicon. Nature 409, 69–71 (2001). https://doi.org/10.1038/35051054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051054

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing