Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Many-particle entanglement with Bose–Einstein condensates

Abstract

The possibility of creating and manipulating entangled states of systems of many particles is of significant interest for quantum information processing; such a capability could lead to new applications that rely on the basic principles of quantum mechanics1. So far, up to four atoms have been entangled in a controlled way2,3. A crucial requirement for the production of entangled states is that they can be considered pure at the single-particle level. Bose–Einstein condensates4,5,6 fulfil this requirement; hence it is natural to investigate whether they can also be used in some applications of quantum information. Here we propose a method to achieve substantial entanglement of a large number of atoms in a Bose–Einstein condensate. A single resonant laser pulse is applied to all the atoms in the condensate, which is then allowed to evolve freely; in this latter stage, collisional interactions produce entanglement between the atoms. The technique should be realizable with present technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduction in the squeezing parameter ξ2.
Figure 2: Quantum Monte Carlo simulation of squeezing in the presence of loss.

Similar content being viewed by others

References

  1. Special issue on quantum information. Phys. World 11 (2) 33–57 (1998).

  2. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 ( 2000).

    Article  ADS  CAS  Google Scholar 

  3. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 ( 2000).

    Article  ADS  CAS  Google Scholar 

  4. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Parkins, A. S. & Walls, D. F. The physics of trapped dilute-gas Bose-Einstein condensates. Phys. Rep. 303, 1–80 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 ( 1993).

    Article  ADS  CAS  Google Scholar 

  8. Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. & Cornell, E. A. Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Miesner, H.-J. et al. Observation of metastable states in spinor Bose-Einstein condensates. Phys. Rev. Lett. 82, 2228– 2231 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Sinatra, A. & Castin, Y. Binary mixtures of Bose-Einstein condensates: Phase dynamics and spatial dynamics. Eur. Phys. J. D 8, 319–332 ( 2000).

    Article  ADS  CAS  Google Scholar 

  12. Mølmer, K., Castin, Y. & Dalibard, J. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524– 538 (1993).

    Article  ADS  Google Scholar 

  13. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 ( 1994).

    Article  ADS  CAS  Google Scholar 

  14. Boyer, P. & Kasevich, M. A. Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases. Phys. Rev. A 56 , R1083–R1086 (1997).

    Article  ADS  Google Scholar 

  15. Santarelli, G. et al. Quantum projection noise in an atomic fountain: A high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Sørensen, A. & Mølmer, K. Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 ( 1999).

    Article  ADS  Google Scholar 

  17. Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: A macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

    Article  ADS  Google Scholar 

  18. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    Article  ADS  Google Scholar 

  20. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, 4649–4652 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation, the European Union project EQUIP, the TMR European network, the ESF under the PESC program “Quantum Information”, the Institute for Quantum Information GmbH, and the Thomas B. Thriges Center for Kvanteinformatik. A.S. acknowledges the hospitality of the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sørensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, A., Duan, LM., Cirac, J. et al. Many-particle entanglement with Bose–Einstein condensates. Nature 409, 63–66 (2001). https://doi.org/10.1038/35051038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051038

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing