Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A scheme for efficient quantum computation with linear optics


Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonlinear phase shifts on one mode.
Figure 2: Conditional sign flip implemented with NS operations.
Figure 3: Conditional sign flip with success probability 1/4.
Figure 4: Teleportation with loss detection (RT1).
Figure 5: Teleportation networks for the code χ2.
Figure 6: Recovery from Z measurement.

Similar content being viewed by others


  1. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    Article  MathSciNet  Google Scholar 

  2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Wiesner, S. Conjugate coding. (Original Manuscript 1969) Sigact News 15, 78–88 ( 1983).

    Article  Google Scholar 

  4. Bennett, C., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3– 28 (1992).

    Article  Google Scholar 

  5. Shor, P. W. in Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS) 56–65 (IEEE Press, Los Alamitos, 1996).

    Google Scholar 

  6. Aharonov, D. & Ben-Or, M. in Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC) 176– 188 (ACM Press, New York, 1996).

    Google Scholar 

  7. Kitaev, A. Y. Quantum computations: algorithms and error correction. Russian Math. Surv. 52, 1191–1249 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  8. Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279, 342–345 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454 , 385–410 (1998).

    Article  ADS  Google Scholar 

  10. Steane, A. Efficient fault-tolerant quantum computing. Nature 399, 124–126 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Experimental proposals for quantum computation. (Special focus issue) Fort. Phys. 48, 767 –1138 (2000).

  12. Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1988).

    Article  ADS  Google Scholar 

  13. Hughes, R. J., Morgan, G. L. & Peterson, C. G. Quantum key distribution over a 48 km optical fibre network. J. Mod. Optics 47, 533– 547 (2000).

    ADS  MathSciNet  Google Scholar 

  14. Tittle, W., Brendel, J., Gisin, N. & Zbinden, H. Long-distance Bell-type tests using energy-time entangled photons. Phys. Rev. A 59, 4150–4163 ( 1999).

    Article  ADS  MathSciNet  Google Scholar 

  15. Townsend, P., Rarity, J. & Tapster, P. Single photon interference in 10 km long optical fibre interferometer. Electron. Lett. 29, 1291 –1293 (1993).

    Article  Google Scholar 

  16. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 4710–4713 (1995).

  17. Cerf, N. J., Adami, C. & Kwiat, P. G. Optical simulation of quantum logic. Phys. Rev. A 57, R1477–R1480 ( 1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Howell, J. C. & Yeazell, J. A. Reducing the complexity of linear optics quantum circuits. Phys. Rev. A 61, 052303/1–5 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Kwiat, P. G., Mitchell, J. R., Schwindt, P. D. D. & White, A. G. Grover's search algorithm: An optical approach. J. Mod. Optics 47, 257–266 ( 2000).

    Article  ADS  MathSciNet  Google Scholar 

  20. Lütkenhaus, N., Calsamiglia, J. & Suominen, K.-A. Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  21. Hong, C. K. & Mandel, L. Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58 –60 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Adleman, L. M., DeMarrais, U. & Huang, M.-D. A. Quantum computability. SIAM J. Comput. 26, 1524–1540 ( 1997).

    Article  MathSciNet  Google Scholar 

  23. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1994).

    Book  Google Scholar 

  26. Aharonov, D. in Annual Reviews of Computational Physics VI (ed. Stauffer, D.) (World Scientific, Singapore, 1999).

    Google Scholar 

  27. DiVincenzo, D. The physical implementation of quantum computation. Fort. Phys. 48, 771–793 ( 2000).

    Article  Google Scholar 

  28. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of an discrete unitary operator. Phys. Rev. Lett. 73, 58–61 ( 1994).

    Article  ADS  CAS  Google Scholar 

  29. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345– 1349 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Weihs, G., Reck, M., Weinfurter, H. & Zeilinger, A. All-fiber three-path Mach-Zehnder interferometer. Opt. Lett. 21, 302–304 (1996).

    Article  ADS  CAS  Google Scholar 

  31. Cormen, T. H., Leiserson, C. E. & Rivest, R. L. Introduction to Algorithms 795 (MIT Press, Cambridge, MA, 1990).

    MATH  Google Scholar 

  32. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 ( 1995).

    Article  ADS  Google Scholar 

  33. Steane, A. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  34. Calderbank, A., Rains, E., Shor, P. & Sloane, N. Quantum error correction and orthogonal geometry. Phys. Rev. A 78, 405–408 (1997).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  35. Gottesman, D. A class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862– 1868 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Gottesman, D. A theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Grassl, M., Beth, T. & Pellizari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 ( 1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. Knill, E., Laflamme, R. & Milburn, G. Thresholds for linear optics quantum computation. Preprint quant-ph/0006120 at 〈〉 (2000 ).

  39. Dür, W., Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169–181 ( 1999).

    Article  ADS  Google Scholar 

  40. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500– 503 (1999).

    Article  ADS  CAS  Google Scholar 

  41. Foden, C. L., Talyanskii, V. I., Milburn, G. J., Leadbeater, M. L. & Pepper, M. High frequency acousto-electric single photon source. Phys. Rev. A 62, 011803(R)/1–4 (2000 ).

    Article  ADS  Google Scholar 

  42. Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063 –1065 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Preprint quant-ph/0008040 at 〈〉 (2000).

  44. Bouwmeester, D., Pan, J., Mattle, K., Eibl, M., Weinfurter, H. & Zeilinger, A. Experimental quantum teleportation. Nature 390, 575– 579 (1997).

    Article  ADS  CAS  Google Scholar 

  45. Boschi, D., Branca, S., Martini, F. D., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolski-Rosen channels. Phys. Rev. Lett. 80, 1121– 1125 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references


We thank P. Kwiat and A. White for help and discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. Knill.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing