Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease


Mice that overexpress the human mutant amyloid precursor protein (hAPP) show learning deficits, but the apparent lack of a relationship between these deficits and the progressive β-amyloid plaque formation that the hAPP mice display is puzzling. In the water maze1, hAPP mice are impaired before and after amyloid plaque deposition2,3,4,5,6,7. Here we show, using a new water-maze training protocol, that PDAPP mice8 also exhibit a separate age-related deficit in learning a series of spatial locations. This impairment correlates with β-amyloid plaque burden and is shown in both cross-sectional and longitudinal experimental designs. Cued navigation and object-recognition memory are normal. These findings indicate that Aβ overexpression and/or Aβ plaques are associated with disturbed cognitive function and, importantly, suggest that some but not all forms of learning and memory are suitable behavioural assays of the progressive cognitive deficits associated with Alzheimer's-disease-type pathologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Age-related and age-independent deficits in spatial learning in PDAPP mice.
Figure 2: Swim speeds and swim paths.
Figure 3: An age-related decline in learning capacity in PDAPP mice.The y axes show the number of successive spatial locations of a single hidden platform learned to criterion in 10 d of training (‘learning capacity’).
Figure 4: The relationship between performance and β-amyloid plaque deposition.
Figure 5: Normal object-recognition memory.


  1. 1

    Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 ( 1982).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Yamaguchi, F. et al. Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory. NeuroReport 2, 781–784 (1991).

    CAS  Article  Google Scholar 

  3. 3

    D'Hooge, R., Nagels, G., Westland, C. E., Muck, L. & De Deyn, P. P. Spatial learning deficit in mice expressing human 751-amino acid beta-amyloid precursor protein. NeuroReport 7, 2807–2811 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Nalbantoglu, J. et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 387, 500–505 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Justice, A. & Motter, R. Behavioral characterization of PDAPP transgenic Alzheimer mice. Soc. Neurosci. Abstracts 23, 1637 (1997).

    Google Scholar 

  6. 6

    Moechars, D. et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274, 6483–6492 ( 1999).

    CAS  Article  Google Scholar 

  7. 7

    Raber, J. et al. Apolipoprotein E and cognitive performance. Nature 404, 352–354 ( 2000).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Rawlins, J. N. P. Associations across time: The hippocampus as a temporary memory store. Behav. Brain Sci. 8, 479– 497 (1985).

    Article  Google Scholar 

  10. 10

    Whishaw, I. Q. & Tomie, J. A. Perseveration on place reversals in spatial swimming pool tasks: further evidence for place learning in hippocampal rats. Hippocampus 7, 361–370 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Steele, R. J. & Morris, R. G. M. Delay-dependent impairment of a matching to place task with chronic and intrahippocampal infusion of the NMDA antagonist D-AP5. Hippocampus 9, 118–136 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613– 616 (1999).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22, 425–489 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Chen, K. S. et al. Neurodegenerative Alzheimer-like pathology in PDAPP 717V→F transgenic mice. Prog. Brain Res. 117, 327 –334 (1998).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Ennaceur, A. & Delacour, J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31, 47–59 ( 1988).

    CAS  Article  Google Scholar 

  16. 16

    Tang, Y. P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 ( 1999).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Chapman, P. F. et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci. 2, 271–276 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99– 102 (1996).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Johnson-Wood, K. et al. Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 1550–1555 ( 1997).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Dodart, J.-C., Mathis, C., Bales, K. R., Paul, S. M. & Ungerer, A. Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F β-amyloid precursor protein. Neurosci. Lett. 277, 49–52 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Dodart, J.-C. et al. Neuroanatomical abnormalities in behaviorally characterised APPV717F Transgenic Mice. Neurobiol. Dis. 7, 71–85 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Larson, J., Lynch, G., Games, D. & Seubert, P. Alterations in synaptic transmission from young and aged PDAPP mice. Brain Res. 840, 23–35 ( 1999).

    CAS  Article  Google Scholar 

  23. 23

    Clayton, N. S. & Dickinson, A. What, where and when: Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 ( 1998).

    ADS  CAS  Article  Google Scholar 

  24. 24

    O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

    Google Scholar 

  25. 25

    Dodart, J. C. et al. Behavioral disturbances in transgenic mice overexpressing the V717F β-amyloid precursor protein. Behav. Neurosci. 113, 982–990 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Naslund, J. et al. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. J. Am. Med. Assoc. 283, 1571–1577 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Masliah, E. et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β-amyloid precursor protein and Alzheimer's disease. J. Neurosci. 16, 5795– 5811 (1996).

    CAS  Article  Google Scholar 

Download references


This work was supported by grants from the MRC and the Cunningham Trust. We are indebted to Bill Nailon (CJD Surveillance Unit, Edinburgh) and Karen Khan (Elan Pharmaceuticals) for assistance with immunocytochemistry and image analysis.

Author information



Corresponding author

Correspondence to Richard G. M. Morris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, G., Chen, K., Knox, J. et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease. Nature 408, 975–979 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing