Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recognition memory: What are the roles of the perirhinal cortex and hippocampus?


The hallmark of medial temporal lobe amnesia is a loss of episodic memory such that patients fail to remember new events that are set in an autobiographical context (an episode). A further symptom is a loss of recognition memory. The relationship between these two features has recently become contentious. Here, we focus on the central issue in this dispute — the relative contributions of the hippocampus and the perirhinal cortex to recognition memory. A resolution is vital not only for uncovering the neural substrates of these key aspects of memory, but also for understanding the processes disrupted in medial temporal lobe amnesia and the validity of animal models of this syndrome.

Key Points

  • The potential roles of the hippocampus and perirhinal cortex in recognition memory (judgement of prior occurrence) are reviewed in relation to whether the evidence for a dual-process model of recognition memory is sufficient to reject the alternative, unitary model.

  • Recent results from animal recording, immunohistochemical imaging and ablation studies are summarized in relation to this issue, and then considered in relation to findings from human studies.

  • Most results from animal studies favour the view that recognition memory might be subdivided functionally and neuroanatomically within the temporal lobe into two main components:

    (1) One component is a familiarity and recency discrimination system centred on perirhinal cortex. This perirhinal system rapidly processes information about the novelty or prior occurrence of individual stimulus items.

    (2) The second component is a recollective system centred on the hippocampus. This hippocampal system is slower, associational and processes information concerning the prior occurrence of individual stimuli or collections of stimuli in relation to other stimuli, including, more generally, information about the prior occurrence of episodes or events.

  • The implications of such a proposed division in humans are that selective hippocampal damage should impair episodic memory, including recollective and associative aspects of recognition memory, while sparing aspects of recognition memory based on familiarity discrimination of individual items. By contrast, selective lesions of the perirhinal and adjacent cortices should impair familiarity discrimination for individual items, but may leave recollective aspects of recognition memory relatively unimpaired.

  • A review of human imaging and event-related potential (ERP) data indicates potential consistency with such a division, although not all studies support a qualitative as opposed to quantitative distinction. Moreover, this division remains to be clearly established in clinical lesion studies.

  • Critical studies into the neural basis of human and animal amnesia need to be designed and interpreted in the light of the different systems that might be employed to solve recognition memory tasks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Multiple routes for sensory information reaching the hippocampus.
Figure 2: Response decrements on stimulus repetition: separable encoding of recency and familiarity information.
Figure 3: The paired-viewing procedure for simultaneously presenting novel and familiar stimuli.


  1. 1

    Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psych. 20, 11–21 ( 1957).

    CAS  Google Scholar 

  2. 2

    Gaffan, D. & Murray, E. A. Monkeys (Macaca fascicularis ) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. Behav. Neurosci. 106, 30–38 (1992).

    CAS  PubMed  Google Scholar 

  3. 3

    Meunier, M., Bachevalier, J., Mishkin, M. & Murray, E. A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13, 5418–5432 (1993).

    CAS  PubMed  Google Scholar 

  4. 4

    Suzuki, W. A., Zola-Morgan, S., Squire, L. R. & Amaral, D. G. Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J. Neurosci. 13, 2430–2451 (1993).

    CAS  PubMed  Google Scholar 

  5. 5

    Mumby, D. G. & Pinel, J. P. J. Rhinal cortex lesions and object recognition in rats. Behav. Neurosci. 108, 11–18 (1994).

    CAS  PubMed  Google Scholar 

  6. 6

    Alvarez, P., Zola-Morgan, S. & Squire, L. R. Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. J. Neurosci. 15, 3796–3807 (1995).

    CAS  PubMed  Google Scholar 

  7. 7

    Ennaceur, A., Neave, N. & Aggleton, J. P. Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav. Brain Res. 80, 9–25 (1996).

    CAS  PubMed  Google Scholar 

  8. 8

    Meunier, M., Hadfield, W., Bachevalier, J. & Murray, E. A. Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys. J. Neurophysiol. 75, 1190–1205 (1996).

    CAS  PubMed  Google Scholar 

  9. 9

    Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus . J. Neurosci. 18, 6568– 6582 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 22, 425–489 ( 1999).A review of current evidence that the hippocampal-anterior thalamic system underlies episodic memory.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Beason-Held, L. L., Rosene, D. L., Killiany, R. J. & Moss, M. B. Hippocampal formation lesions produce memory impairment in the rhesus monkey . Hippocampus 9, 562–574 (1999).

    CAS  PubMed  Google Scholar 

  12. 12

    Zola, S. M., Squire, L. R., Teng, E., Stefanacci, L., Buffalo, E. A. & Clark, R. E. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20, 451– 463 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 ( 1980).

    Google Scholar 

  14. 14

    Haist, F. & Shimamura, A. P. On the relationship between recall and recognition memory. J. Exp. Psychol. Learn. Mem. Cogn. 18, 691–702 ( 1992).

    CAS  PubMed  Google Scholar 

  15. 15

    Hirshman, E. & Master, S. Modeling the conscious correlates of recognition memory: reflections on the remember–know paradigm. Mem. Cogn. 25, 345–351 ( 1997). PubMed

    CAS  Google Scholar 

  16. 16

    Donaldson, W. The role of decision processes in remembering and knowing. Mem. Cogn. 26, 523–533 ( 1999).

    Google Scholar 

  17. 17

    Jacoby, L. L. & Dallas, M. On the relationship between autobiographical memory and perceptual learning. J. Exp. Psychol. Gen. 3, 306–340 (1981). PubMed

    Google Scholar 

  18. 18

    Gardiner, J. M. & Parkin, A. J. Attention and recollective experience in recognition memory. Mem. Cogn. 18, 579–583 (1990). PubMed

    CAS  Google Scholar 

  19. 19

    Brown, M. W., Wilson, F. A. W. & Riches, I. P. Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res. 409, 158– 162 (1987).

    CAS  Google Scholar 

  20. 20

    Fahy, F. L., Riches, I. P. & Brown, M. W. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96, 457–472 (1993).

    CAS  PubMed  Google Scholar 

  21. 21

    Li, L., Miller, E. K. & Desimone, R. The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69, 1918–1929 (1993).

    CAS  Google Scholar 

  22. 22

    Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).

    CAS  PubMed  Google Scholar 

  23. 23

    Sobotka, S. & Ringo, J. L. Investigations of long-term recognition and association memory in unit responses from inferotemporal cortex. Exp. Brain Res. 96, 28–38 (1993).

    CAS  PubMed  Google Scholar 

  24. 24

    Xiang, J. Z. & Brown, M. W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe . Neuropharmacology 37, 657– 676 (1998).

    CAS  PubMed  Google Scholar 

  25. 25

    Brown, M. W. Neuronal responses and recognition memory. Semin. Neurosci. 8, 23–32 (1996).

    Google Scholar 

  26. 26

    Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA 93, 13494– 13499 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Eichenbaum, H., Schoenbaum, G., Young, B. & Bunsey, M. Functional organization of the hippocampal memory system. Proc. Natl Acad. Sci. USA 93, 13500–13507 (1996).

    CAS  PubMed  Google Scholar 

  28. 28

    Ringo, J. L. Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behav. Brain Res. 76, 191 –197 (1996).

    CAS  PubMed  Google Scholar 

  29. 29

    Brown, M. W. & Xiang, J. Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998). A review of what is known of neuronal responses that might provide substrates for recognition memory.

    CAS  PubMed  Google Scholar 

  30. 30

    Suzuki, W. A. & Eichenbaum, H. The neurophysiology of memory . Ann. NY Acad. Sci. 911, 175– 191 (2000).

    CAS  PubMed  Google Scholar 

  31. 31

    Eichenbaum, H. Cortical–hippocampal networks for declarative memory. Nature Rev. Neurosci. 1, 41–50 (2000).A review of the possible roles of the hippocampus and parahippocampal cortices in memory.

    CAS  Google Scholar 

  32. 32

    Miller, E. K. & Desimone, R. Parallel neuronal mechanisms for short-term memory. Science 263, 520– 522 (1994).

    CAS  Google Scholar 

  33. 33

    Rolls, E. T. et al. Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. J. Neurosci. 9, 1835–1845 (1989).

    CAS  PubMed  Google Scholar 

  34. 34

    Riches, I. P., Wilson, F. A. W. & Brown, M. W. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J. Neurosci. 11, 1763–1779 (1991).

    CAS  PubMed  Google Scholar 

  35. 35

    Rolls, E. T., Cahusac, P. M. B., Feigenbaum, J. D. & Miyashita, Y. Responses of single neurons in the hippocampus of the macaque related to recognition memory. Exp. Brain Res. 93, 299– 306 (1993).

    CAS  PubMed  Google Scholar 

  36. 36

    Zhu, X. O., Brown, M. W. & Aggleton, J. P. Neuronal signalling of information important to visual recognition memory in rat rhinal and neighbouring cortices. Eur. J. Neurosci. 7, 753–765 (1995).

    CAS  PubMed  Google Scholar 

  37. 37

    Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    CAS  Google Scholar 

  38. 38

    Gross, C. G., Rochamiranda, C. E. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96– 111 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Mikami, A. & Kubota, B. Inferotemporal neuron activities and color discrimination with delay. Brain Res. 182 , 65–78 (1980).

    CAS  PubMed  Google Scholar 

  40. 40

    Brown, M. W. in Neuronal Plasticity and Memory Formation. IBRO Monograph Series Vol. 9 (eds Ajmone-Marsan, C. & Matthies, H.) 557– 573 (Raven Press, New York, 1982).

    Google Scholar 

  41. 41

    Colombo, M. & Gross, C. G. Responses of inferior temporal cortex and hippocampal neurons during delayed matching to sample in monkeys (Macaca fascicularis). Behav. Neurosci. 108, 443–455 (1994).

    CAS  PubMed  Google Scholar 

  42. 42

    Hampson, R. E., Simeral, J. D. & Deadwyler, S. A. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610– 614 (1999).

    CAS  PubMed  Google Scholar 

  43. 43

    Wiebe, S. P. & Staubli, U. V. Dynamic filtering of recognition memory codes in the hippocampus. J. Neurosci. 19, 10562–10574 (1999).

    CAS  PubMed  Google Scholar 

  44. 44

    Eacott, M. J., Gaffan, D. & Murray, E. A. Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur. J. Neurosci. 6, 1466– 1478 (1994).

    CAS  PubMed  Google Scholar 

  45. 45

    Mishkin, M. & Delacour, J. An analysis of short-term visual memory in the monkey. J. Exp. Psychol. 1, 326–334 (1975). PubMed

    CAS  Google Scholar 

  46. 46

    Fuster, J. M. & Jervey, J. P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 ( 1981).

    CAS  PubMed  Google Scholar 

  47. 47

    Baylis, G. C. & Rolls, E. T. Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp. Brain Res. 65, 614–622 (1987).

    CAS  Google Scholar 

  48. 48

    Maunsell, J. H. R., Sclar, G., Nealey, T. A. & DePriest, D. D. Extraretinal representations in area V4 in the macaque monkey. Vis. Neurosci. 7, 561–573 ( 1991).

    CAS  PubMed  Google Scholar 

  49. 49

    Miller, E. K., Gochin, P. M. & Gross, C. G. Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Vis. Neurosci. 7, 357–362 (1991).

    CAS  PubMed  Google Scholar 

  50. 50

    Vogels, R., Sary, G. & Orban, G. A. How task-related are the responses of inferior temporal meurons? Vis. Neurosci. 12, 207– 214 (1995).

    CAS  PubMed  Google Scholar 

  51. 51

    Young, B. J., Otto, T., Fox, G. D. & Eichenbaum, H. Memory representation within the parahippocampal region. J. Neurosci. 17, 5183–5195 (1997).

    CAS  PubMed  Google Scholar 

  52. 52

    O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford University Press, Oxford, 1978).

    Google Scholar 

  53. 53

    O'Keefe, J. Hippocampus, theta rhythms and spatial memory. Curr. Opin. Neurobiol. 3, 917–924 ( 1993).

    CAS  PubMed  Google Scholar 

  54. 54

    Ono, T., Eifuku, S., Nakamura, K. & Nishijo, H. Monkey hippocampal neuron responses related to spatial and non-spatial influence. Neurosci. Lett. 159, 75–78 (1993).

    CAS  PubMed  Google Scholar 

  55. 55

    Muller, R. A quarter of a century of place cells. Neuron 17, 813–822 (1996).A review of the properties and functions of hippocampal neurons that respond according to where an animal is.

    CAS  PubMed  Google Scholar 

  56. 56

    Wiener, S. I. Spatial, behavioral and sensory correlates of hippocampal CA1 complex spike cell activity: implications for information processing functions. Prog. Neurobiol. 49, 335–361 (1996).

    CAS  PubMed  Google Scholar 

  57. 57

    O'Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J. & Maguire, E. A. Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R. Soc. London 353, 1333–1340 (1998). PubMed

    CAS  Google Scholar 

  58. 58

    Rolls, E. T., Treves, A., Robertson, R. G., Georges-François, P. & Panzeri, S. Information about spatial view in an ensemble of primate hippocampal cells. J. Neurophysiol. 79, 1797–1813 ( 1998).

    CAS  PubMed  Google Scholar 

  59. 59

    Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317– 323 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Suzuki, W. A. The long and the short of it: memory signals in the medial temporal lobe. Neuron 24, 295–298 ( 1999).

    CAS  PubMed  Google Scholar 

  61. 61

    Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613– 616 (1999).

    CAS  PubMed  Google Scholar 

  62. 62

    Parkinson, J. K., Murray, E. A. & Mishkin, M. A selective mnemonic role for the hippocampus in monkeys: memory for the location of objects. J. Neurosci. 8, 4159–4167 (1989). PubMed

    Google Scholar 

  63. 63

    Eichenbaum, H., Otto, T. & Cohen, N. J. Two functional components of the hippocampal memory system . Behav. Brain Sci. 17, 449– 518 (1994).

    Google Scholar 

  64. 64

    Gaffan, D. Scene-specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection. J. Cogn. Neurosci. 6, 305–320 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Gaffan, D. & Parker, A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and 'object-in-place' memory. J. Neurosci. 16, 5864–5869 (1996).A disconnection study in monkeys showing how the perirhinal cortex and structures linked by the fornix interact on tasks that require a combination of object and location information.

    CAS  PubMed  Google Scholar 

  66. 66

    Burwell, R. D., Shapiro, M. L., O'Malley, M. T. & Eichenbaum, H. Positional firing properties of perirhinal cortex neurons. NeuroReport 9, 3013–3018 ( 1998).

    CAS  PubMed  Google Scholar 

  67. 67

    Suzuki, W. A., Miller, E. K. & Desimone, R. Object and place memory in the macaque entorhinal cortex . J. Neurophysiol. 78, 1062– 1081 (1997).

    CAS  PubMed  Google Scholar 

  68. 68

    Quirk, G. J., Muller, R. U., Kubie, J. L. & Ranck, J.B. Jr. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci. 12, 1945–1963 (1992).

    CAS  PubMed  Google Scholar 

  69. 69

    Dragunow, M. A role for immediate-early transcription factors in learning and memory. Behav. Genet. 26, 293–299 (1996).

    CAS  PubMed  Google Scholar 

  70. 70

    Herdegen, T. & Leah, J. D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Rev. 28, 370–490 (1998).

    CAS  PubMed  Google Scholar 

  71. 71

    Zhu, X. O., Brown, M. W., McCabe, B. J. & Aggleton, J. P. Effects of novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain. Neuroscience 69, 821–829 (1995).

    CAS  PubMed  Google Scholar 

  72. 72

    Zhu, X. O., McCabe, B. J., Aggleton, J. P. & Brown, M. W. Mapping visual recognition memory through expression of the immediate early gene c-fos. NeuroReport 7, 1871– 1875 (1996).

    CAS  PubMed  Google Scholar 

  73. 73

    Wan, H., Aggleton, J. P. & Brown, M. W. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19, 1142–1148 (1999).

    CAS  PubMed  Google Scholar 

  74. 74

    Hess, U. S., Lynch, G. & Gall, C. M. Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. J. Neurosci. 15, 7796–7809 (1995).

    CAS  PubMed  Google Scholar 

  75. 75

    Montero, V. M. c-Fos induction in sensory pathways of rats exploring a novel complex environment: shifts of active thalamic reticular sectors by predominant sensory cues. Neuroscience 76, 1069–1081 (1997).

    CAS  PubMed  Google Scholar 

  76. 76

    Zhu, X. O., McCabe, B. J., Aggleton, J. P. & Brown, M. W. Differential activation of the hippocampus and perirhinal cortex by novel visual stimuli and a novel environment. Neurosci. Lett. 229, 141–143 (1997).

    CAS  PubMed  Google Scholar 

  77. 77

    Vann, S. D., Brown, M. W., Erichsen, J. T. & Aggleton, J. P. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tasks . J. Neurosci. 20, 2711– 2718 (2000).

    CAS  PubMed  Google Scholar 

  78. 78

    Zola-Morgan, S., Squire, L. R., Amaral, D. G. & Suzuki, W. A. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J. Neurosci. 9, 4355–4370 ( 1989).

    CAS  PubMed  Google Scholar 

  79. 79

    Leonard, B. W., Amaral, D. G., Squire, L. R. & Zola-Morgan, S. Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J. Neurosci. 15, 5637– 5659 (1995).

    CAS  PubMed  Google Scholar 

  80. 80

    Ramus, S. J., Zola-Morgan, S. & Squire, L. R. Effects of lesions of perirhinal cortex or parahippocampal cortex on memory in monkeys. Soc. Neurosci. Abstr. 20, 1074 (1994).

    Google Scholar 

  81. 81

    Otto, T. & Eichenbaum, H. Complementary roles of the orbital prefrontal cortex and the perirhinal–entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task. Behav. Neurosci. 106, 762–775 (1992).

    CAS  PubMed  Google Scholar 

  82. 82

    Buffalo, E. A., Stefanacci, L., Squire, L. R. & Zola, S. M. A re-examination of the concurrent discrimination learning task: the importance of anterior inferotemporal cortex, area TE. Behav. Neurosci. 112, 3–14 (1998).

    CAS  PubMed  Google Scholar 

  83. 83

    Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P. & Amaral, D. G. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J. Neurosci. 12, 2582–2596 ( 1992).

    CAS  PubMed  Google Scholar 

  84. 84

    Aggleton, J. P., Hunt, P. R. & Rawlins, J. N. P. The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav. Brain Res. 19, 133–146 (1986).

    CAS  PubMed  Google Scholar 

  85. 85

    Mumby, D. G., Wood, E. R. & Pinel, J. P. J. Object recognition memory in rats is only mildly impaired by lesions of the hippocampus and amygdala. Psychobiology 20, 18–27 ( 1992).

    Google Scholar 

  86. 86

    Mumby, D. G., Pinel, J. P. J., Kornecook, T. J., Shen, M. J. & Redila, V. A. Memory deficits following lesions of hippocampus or amygdala in rat: assessment by an object-memory test battery . Psychobiology 23, 26– 36 (1995).

    Google Scholar 

  87. 87

    Honey, R. C., Watt, A. & Good, M. Hippocampal lesions disrupt an associative-mismatch process. J. Neurosci. 18, 2226–2230 (1998).

    CAS  PubMed  Google Scholar 

  88. 88

    Murray, E. A., Gaffan, D. & Mishkin, M. Neural substrates of visual stimulus–stimulus association in rhesus monkeys. J. Neurosci. 13, 4549–4561 (1993).

    CAS  PubMed  Google Scholar 

  89. 89

    Higuchi, S. I. & Miyashita, Y. Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl Acad. Sci. USA 93, 739–743 (1996).

    CAS  PubMed  Google Scholar 

  90. 90

    Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 ( 1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Liu, P. & Bilkey, D. K. Perirhinal cortex contributions to performance in the Morris water maze. Behav. Neurosci. 112, 304–315 (1998).

    CAS  PubMed  Google Scholar 

  92. 92

    Liu, P. & Bilkey, D. K. The effects of excitotoxic lesions centred on perirhinal cortex in two versions of the radial arm maze task. Behav. Neurosci. 113, 512–524 (1999). PubMed

    Google Scholar 

  93. 93

    Glenn, M. J. & Mumby, D. G. Place memory is intact in rats with perirhinal cortex lesions. Behav. Neurosci. 112 , 1353–1365 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Bussey, T. J., Muir, J. L. & Aggleton, J. P. Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J. Neurosci. 19, 495–502 (1999).

    CAS  PubMed  Google Scholar 

  95. 95

    Bussey, T. J., Duck, J., Muir, J. L. & Aggleton, J. P. Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices. Behav. Brain Res. 111, 187–202 ( 2000).

    CAS  PubMed  Google Scholar 

  96. 96

    Buckley, M. J. & Gaffan, D. Impairment of visual object discrimination learning after perirhinal cortex ablation. Behav. Neurosci. 111, 467–475 (1997).

    CAS  PubMed  Google Scholar 

  97. 97

    Murray, E. A. & Bussey, T. J. Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn. Neurosci. 3, 142–151 (1999).A review of the possible functions of the perirhinal cortex in object perception and memory. PubMed

    CAS  Google Scholar 

  98. 98

    Wagner, A. D. & Gabrieli, J. D. E. On the relationship between recognition familiarity and perceptual fluency: evidence for distinct mnemonic processes. Acta Psychol. 98, 211– 230 (1998). PubMed

    CAS  Google Scholar 

  99. 99

    Knowlton, B. J. & Squire, L. R. Remembering and knowing: two different expressions of declarative memory. J. Exp. Psychol. Learn. Mem. Cogn. 21, 699– 710 (1995).

    CAS  PubMed  Google Scholar 

  100. 100

    Hamann, S. B. & Squire, L. R. Intact perceptual memory in the absence of conscious memory. Behav. Neurosci. 111, 850–854 (1997).

    CAS  PubMed  Google Scholar 

  101. 101

    Stark, C. E. L. & Squire, L. R. Recognition memory and familiarity judgments in severe amnesia: no evidence for a contribution of repetition priming. Behav. Neurosci. 114, 459–467 (2000).A single case study of a very dense amnesic in whom priming is intact but recognition is at chance.

    CAS  PubMed  Google Scholar 

  102. 102

    Wagner, A. D., Stebbins, G. T., Masciari, F., Fleischman, D. A. & Gabrieli, J. D. E. Neuropsychological dissociation between recognition familiarity and perceptual priming in visual long-term memory. Cortex 34, 493– 511 (1998).

    CAS  PubMed  Google Scholar 

  103. 103

    Buffalo, E. A., Reber, P. J. & Squire, L. R. The human perirhinal cortex and recognition memory . Hippocampus 8, 330–339 (1998).

    CAS  PubMed  Google Scholar 

  104. 104

    Holdstock, J. S., Gutnikov, S. A., Gaffan, D. & Mayes, A. R. Perceptual and mnemonic matching-to-sample in humans: contributions of the hippocampus, perirhinal cortex and other medial temporal lobe corticies. Cortex 36, 301–322 ( 2000).Evidence that the recognition deficit in humans with damage involving the perirhinal cortex is not primarily a perceptual problem.

    CAS  PubMed  Google Scholar 

  105. 105

    Hirst, W. et al. Recognition and recall in amnesics. J. Exp. Psychol. Learn. Mem. Cogn. 12, 445–451 (1986).

    CAS  PubMed  Google Scholar 

  106. 106

    McMackin, D., Cockburn, J., Anslow, P. & Gaffan, D. Correlation of fornix damage with memory impairment in six cases of colloid cyst removal . Acta Neurochir. 135, 12– 18 (1995). PubMed

    CAS  PubMed  Google Scholar 

  107. 107

    Aggleton, J. P. & Shaw, C. Amnesia and recognition memory: a re-analysis of psychometric data. Neuropsychologia 34, 51–62 (1996).

    CAS  PubMed  Google Scholar 

  108. 108

    Parkin, A. J., Dunn, J. C., Lee, C., O'Hara, P. F. & Nussbaum, L. Neurological sequelae of Wernicke's encephalopathy in a 20-year old woman: selective impairment of frontal memory system. Brain Cogn. 21, 1–19 ( 1993).

    CAS  PubMed  Google Scholar 

  109. 109

    Parkin, A. J., Yeoman, J. & Bindschaedler, C. Further characterization of the executive memory impairment following frontal lobe lesions. Brain Cogn. 26, 23–42 (1994).

    CAS  PubMed  Google Scholar 

  110. 110

    Hanley, J. R. & Davies, A. D. M. in Case Studies in the Neuropsychology of Memory (ed. Parkin, A. J.) 111– 126 (Hove, Brighton, 1997).

    Google Scholar 

  111. 111

    Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W. & Mishkin, M. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Mayes, A. R., van Eijk, R., Gooding, P. A., Isaac, C. L. & Holdstock, J. S. What are the functional deficits produced by hippocampal and perirhinal lesions? Behav. Brain Sci. 22, 36–37 ( 1999).

    Google Scholar 

  113. 113

    Aggleton, J. P. et al. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain 123, 101–116 (2000). PubMed

    Google Scholar 

  114. 114

    Holdstock, J. S., Mayes, A. R., Cezayirli, E., Isaac, C. L., Aggleton, J. P. & Roberts, N. A comparison of egocentric and allocentric spatial memory in a patient with selective hippocampal damage. Neuropsychologia 38, 410–425 ( 2000).

    CAS  PubMed  Google Scholar 

  115. 115

    Reed, J. M. & Squire, L. R. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav. Neurosci. 111, 667–675 ( 1997).Evidence that amnesics with bilateral hippocampal formation damage are consistently impaired on tests of recognition memory.

    CAS  PubMed  Google Scholar 

  116. 116

    Manns, J. R. & Squire, L. R. Impaired recognition memory of the Doors and People Test after damage limited to the hippocampus. Hippocampus 9, 495–499 ( 2000). PubMed

    Google Scholar 

  117. 117

    Yonelinas, A. P. Receiver-operating characteristics in recognition memory: evidence for a dual process model. J. Exp. Psychol. Learn. Mem. Cogn. 20 , 1341–1354 (1994).

    CAS  PubMed  Google Scholar 

  118. 118

    Yonelinas, A. P., Kroll, N. E. A., Dobbins, I. G., Lazzara, M. & Knight, R. T. Recollection and familiarity deficits in amnesia: convergence of remember–know, process dissociation, and receiver operating characteristic data. Neuropsychology 12, 323–339 (1998).

    CAS  PubMed  Google Scholar 

  119. 119

    Verfaellie, M. & Treadwell, J. R. Status of recognition memory in amnesia. Neuropsychology 7, 5–13 (1993).

    Google Scholar 

  120. 120

    Squire, L. R. & Zola, S. M. Episodic memory, semantic memory, and amnesia. Hippocampus 8, 205–211 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Rugg, M. D. et al. Dissociations of the neural correlates of implicit and explicit memory. Nature 392, 595– 598 (1998).Event-related-potential study showing different neural correlates of implicit and explicit memory.

    CAS  PubMed  Google Scholar 

  122. 122

    Curran, T. The electrophysiology of incidental and intentional retrieval: ERP old/new effects in lexical decision and recognition memory. Neuropsychologia 37, 771–785 ( 1999).

    CAS  PubMed  Google Scholar 

  123. 123

    Curran, T. Brain potentials of recollection and familiarity. Mem. Cogn. (in the press).

  124. 124

    Wilding, E. L. & Rugg, M. D. An event-related potential study of recognition memory with and without retrieval of source . Brain 119, 889–905 (1996).

    PubMed  Google Scholar 

  125. 125

    Duzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J. & Tulving, E. Event-related brain potential correlates of two states of conscious awareness in memory. Proc. Natl Acad. Sci. USA 94, 5973–5978 ( 1997).

    CAS  PubMed  Google Scholar 

  126. 126

    Fernandez, G. et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 285, 1582 –1585 (1999).

    CAS  PubMed  Google Scholar 

  127. 127

    Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187 (1998). Event-related-MRI study showing how different patterns of brain activation at encoding predict retrieval success.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. J. Recollection and familiarity in recognition memory: an event-related functional magnetic imaging study. J. Neurosci. 19, 3962–3972 (1999).

    CAS  PubMed  Google Scholar 

  129. 129

    Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engel, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci. 3, 1149–1152 ( 2000).Event-related-fMRI evidence that the hippocampus is only activated during recognition when it is accompanied by a recollective experience.

    CAS  PubMed  Google Scholar 

  130. 130

    Gabrieli, J. D. E., Brewer, J. B., Desmond, J. E. & Glover, G. H. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science 276, 264– 266 (1997).

    CAS  PubMed  Google Scholar 

  131. 131

    Tulving, E., Markowitsch, H. J., Kapur, S., Habib, R. & Houle, S. Novelty encoding networks in the human brain: positron emission tomography data. NeuroReport 5, 2525–2528 (1994).

    CAS  PubMed  Google Scholar 

  132. 132

    Vandenberghe, R., Dupont, P., Bormans, G., Mortelmans, L. & Orban, G. Blood flow in human anterior temporal cortex decreases with stimulus familiarity. NeuroImage 2, 306–313 (1995).

    CAS  PubMed  Google Scholar 

  133. 133

    Stern, C. E. et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 93, 8660–8665 (1996).

    CAS  PubMed  Google Scholar 

  134. 134

    Jiang, Y., Haxby, J. V., Martin, A., Ungerleider, L. G. & Parasuraman, R. Complementary neural mechanisms for tracking items in human working memory. Science 287, 643–646 (2000).

    CAS  Google Scholar 

  135. 135

    Cho, K. et al. An fMRI study of differential perirhinal and prefrontal activation during familiarity/recency discrimination. Eur. J. Neurosci. 12, 42.13 (2000).

    Google Scholar 

  136. 136

    Stark, C. E. L. & Squire, L. R. fMRI activity in the medial temporal lobe during recognition memory as a function of study–test interval. Hippocampus 10, 329– 337 (2000).

    CAS  PubMed  Google Scholar 

  137. 137

    Stark, C. E. L. & Squire, L. R. Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J. Neurosci. 20, 7776– 7781 (2000).

    CAS  PubMed  Google Scholar 

  138. 138

    Standing, L. Learning 10,000 pictures. Q. J. Exp. Psychol. 25, 207–222 (1973).

    CAS  PubMed  Google Scholar 

  139. 139

    Seeck, M. et al. Evidence for rapid face recognition from human scalp and intracranial electrodes. NeuroReport 8, 2749– 2754 (1997).

    CAS  PubMed  Google Scholar 

  140. 140

    Hintzman, D. L., Caulton, D. A. & Levitin, D. J. Retrieval dynamics in recognition and list discrimination: further evidence of separate processes of familiarity and recall. Mem. Cogn. 26, 449–462 ( 1998). PubMed

    CAS  Google Scholar 

  141. 141

    McElree, B., Dolan, P. O. & Jacoby, L. R. Isolating the contributions of familiarity and source information to item recognition: a time course analysis. J. Exp. Psychol. Learn. Mem. Cogn. 25, 563– 582 (2000). PubMed

    Google Scholar 

  142. 142

    Bogacz, R., Brown, M. W. & Giraud-Carrier, C. in Proc. Int. Conf. Artif. Neural Networks 773–776 (IEEE, London, 1999).

    Google Scholar 

  143. 143

    Bogacz, R., Brown, M. W. & Giraud-Carrier, C. Model of familiarity discrimination in the perirhinal cortex. J. Comput. Neurosci. (in the press).

  144. 144

    Ziakopoulos, Z., Brown, M. W. & Bashir, Z. I. Input- and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Neuroscience 92, 459–472 (1999).

    CAS  PubMed  Google Scholar 

  145. 145

    Cho, K., Kemp, N., Noel, J., Aggleton, J. P., Brown, M. W. & Bashir, Z. I. A new form of long-term depression in the perirhinal cortex. Nature Neurosci. 3, 150–156 ( 2000).

    CAS  PubMed  Google Scholar 

  146. 146

    Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H. & Lohman, A. H. M. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 33, 161– 253 (1989).

    CAS  Google Scholar 

  147. 147

    Lavenex, P. & Amaral, D. G. Hippocampal–neocortical interactions: a hierarchy of associativity. Hippocampus 10, 420–430 (2000).

    CAS  Google Scholar 

  148. 148

    Burwell, R. D., Witter, M. P. & Amaral, D. G. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5, 390– 408 (1995).

    CAS  PubMed  Google Scholar 

  149. 149

    Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum . Semin. Neurosci. 8, 3– 12 (1996).

    Google Scholar 

  150. 150

    Shi, C. J. & Cassell, M. D. Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J. Comp. Neurol. 382, 153–175 (1997).

    CAS  PubMed  Google Scholar 

  151. 151

    Burwell, R. D. & Amaral, D. G. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J. Comp. Neurol. 398, 179–205 (1998).

    CAS  PubMed  Google Scholar 

Download references


Our work is supported by the MRC, BBSRC and Wellcome Trust. We are grateful to P. Machin and E. Wilding for helpful comments.

Author information



Related links

Related links



Learning and Memory

Neural Activity and the development of Brain circuits

Neural Networks and Behaviour

Long-term Potentiation



Tasks that rely on a judgement of prior occurrence for their solution.


In such recognition memory tasks, presentation of a stimulus is followed by a delay, after which a choice is offered. In matching tasks, the originally presented stimulus must be chosen; in non-matching tasks, a new stimulus must be selected. With small stimulus sets, the stimuli are frequently repeated, thus becoming highly familiar. Hence, typically, such tasks are most readily solved by short-term or working memory rather than by long-term memory mechanisms.


Stimuli that are used on only one trial, or at least very infrequently, in a delayed matching task.


Immediate early genes control the transcription of other genes, and thereby provide the early stages in the control of the production of specific proteins.


An immediate early gene that is rapidly turned on when many types of neuron increase their activity. It can therefore be used to identify responsive neurons.


The region of rat cortex posterior to the perirhinal cortex, thought to be analogous to parts of the parahippocampal gyrus in primates.


Unilateral lesions in two different sites in opposite hemispheres. Behavioural impairment following such lesions establishes that the regions are functionally dependent on each other.


Neural recordings made on the scalp in which activity changes in populations rather than specific neurons can be temporally linked to an event.


As the processing of information moves from perception-based features ('shallow') to semantic features ('deep'), subsequent recall is aided even though priming is little affected.


A subjective decision is made about whether the previous occurrence of a recognized stimulus is linked with the retrieval of the learning episode ('remembered') or whether there is merely a feeling of familiarity ('knowing').


Functional magnetic resonance imaging (fMRI) in which it is possible to detect signal changes after single events.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, M., Aggleton, J. Recognition memory: What are the roles of the perirhinal cortex and hippocampus? . Nat Rev Neurosci 2, 51–61 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing