Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High constitutive activity of native H3 receptors regulates histamine neurons in brain

Abstract

Some G-protein-coupled receptors display ‘constitutive activity’, that is, spontaneous activity in the absence of agonist1,2,3,4. This means that a proportion of the receptor population spontaneously undergoes an allosteric transition, leading to a conformation that can bind G proteins3. The process has been shown to occur with recombinant receptors expressed at high density, and/or mutated, but also non-mutated recombinant receptors expressed at physiological concentrations5,6,7. Transgenic mice that express a constitutively active mutant of the β 2-adrenergic receptor display cardiac anomalies8; and spontaneous receptor mutations leading to constitutive activity are at the origin of some human diseases9,10. Nevertheless, this process has not previously been found to occur in animals expressing normal levels of receptor3,4. Here we show that two isoforms of the recombinant rat H3 receptor11,12 display high constitutive activity. Using drugs that abrogate this activity (‘inverse agonists’) and a drug that opposes both agonists and inverse agonists (‘neutral antagonist’), we show that constitutive activity of native H3 receptors is present in rodent brain and that it controls histaminergic neuron activity in vivo . Inverse agonists may therefore find therapeutic applications, even in the case of diseases involving non-mutated receptors expressed at normal levels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two rat H3-receptor isoforms and their expression in rat brain regions.
Figure 2: Constitutive activity and pharmacology of H3S or H 3L receptors expressed in CHO cells.
Figure 3: Effects of H3-receptor ligands on responses mediated by native H3 receptors in rodent brain.

Similar content being viewed by others

References

  1. Costa, T., Ogino, Y., Munson, P. J., Onaran, H. O. & Rodbard, D. Drug efficacy at guanine nucleotides-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol. Pharmacol. 41, 549–560 ( 1992) .

    CAS  PubMed  Google Scholar 

  2. Schütz, W. & Freissmuth, M. Reverse intrinsic activity of antagonists on G protein-coupled receptors. Trends Pharmacol. Sci. 13, 376–380 (1992).

    Article  Google Scholar 

  3. Lefkowitz, R. J., Cotecchia, S., Samama, P. & Costa, T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303 –307 (1993).

    Article  CAS  Google Scholar 

  4. Milligan, G., Bond, R. A. & Lee, M. Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol. Sci. 16, 10–13 (1995).

    Article  CAS  Google Scholar 

  5. Claeysen, S., Sebben, M., Becamel, C., Bockaert, J. & Dumuis, A. Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol. Pharmacol. 55, 910– 920 (1999).

    CAS  PubMed  Google Scholar 

  6. Smit, M. et al. Inverse agonism of histamine H2 antagonists accounts for upregulation of spontaneously active histamine H2 receptors. Proc. Natl Acad. Sci. USA 93, 6802– 6807 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Berg, K. A., Stout, B. D., Cropper, J. D., Maayani, S. & Clarke, W. P. Novel actions of inverse agonists on 5-HT2C receptor systems. Mol. Pharmacol. 55, 863–872 (1999).

    CAS  PubMed  Google Scholar 

  8. Bond, R. A. et al. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 374, 272–276 ( 1995).

    Article  ADS  CAS  Google Scholar 

  9. Parma, J. et al. Somatic mutations in the thyrotropin gene cause hyperfunctioning thyroid adenoma. Nature 365, 649– 651 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Spiegel, A. M. Defects in G protein-coupled signal transduction in human disease. Annu. Rev. Physiol. 58, 143–170 (1996) .

    Article  CAS  Google Scholar 

  11. Arrang, J.-M., Garbarg, M. & Schwartz, J.-C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302, 832–837 ( 1983).

    Article  ADS  CAS  Google Scholar 

  12. Arrang, J.-M. et al. Highly potent and selective ligands for histamine H3 -receptors. Nature 327, 117– 123 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Lovenberg, T. W. et al. Cloning and functional expression of the human histamine H 3 receptor. Mol. Pharmacol. 55, 1101 –1107 (1999).

    Article  CAS  Google Scholar 

  14. Tardivel-Lacombe, J. et al. Cloning and cerebral expression of the guinea pig histamine H3 receptor: evidence for two isoforms. NeuroReport 11, 755–759 ( 2000).

    Article  CAS  Google Scholar 

  15. Giros, B. et al. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342, 923–926 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Monsma, F. J., McVittie, L. D., Gerfen, C. R., Mahan, L. C. & Sibley, D. Multiple D2 dopamine receptors produced by alternative splicing. Nature 342, 926–929 (1989).

    Article  ADS  CAS  Google Scholar 

  17. West, R. E. et al. Identification of two H3-histamine receptor subtypes. Mol. Pharmacol. 38, 610– 613 (1990).

    CAS  PubMed  Google Scholar 

  18. Hill, S. J. et al. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol. Rev. 49, 253–278 (1997).

    CAS  PubMed  Google Scholar 

  19. Harper, E. A., Shankley, N. P. & Black, J. W. Evidence that histamine homologues discriminate between H3-receptors in guinea-pig cerebral cortex and ileum longitudinal muscle myenteric plexus. Brit. J. Pharmacol. 128, 751–759 (1999).

    Article  CAS  Google Scholar 

  20. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

  21. Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G. & Lefkowitz, R. J. Constitutive activation of the α1B-adrenergic receptor by all aminoacid substitutions at a single site. J. Biol. Chem. 267, 1430 –1433 (1992).

    CAS  PubMed  Google Scholar 

  22. Ligneau, X. et al. [125I]Iodoproxyfan, a new antagonist to label and visualize cerebral histamine H3 receptors. J. Pharmacol. Exp. Ther. 271, 452–459 (1994).

    CAS  PubMed  Google Scholar 

  23. Clark, E. A. & Hill, S. J. Differential effect of sodium ions and guanine nucleotides on the binding of thioperamide and clobenpropit to histamine H3-receptors in rat cerebral cortical membranes. Brit. J. Pharmacol. 114, 357–362 (1995).

    Article  CAS  Google Scholar 

  24. Garbarg, M. et al. S-[2-(4-imidazolyl)ethyl]isothiourea, a highly specific and potent histamine H3 receptor agonist. J. Pharmacol. Exp. Ther. 263, 304–310 (1992).

    CAS  PubMed  Google Scholar 

  25. Ligneau, X. et al. Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J. Pharmacol. Exp. Ther. 287, 658–666 ( 1998) .

    CAS  PubMed  Google Scholar 

  26. Arrang, J.-M., Garbarg, M. & Schwartz, J. C. Autoinhibition of histamine release in brain by presynaptic H3-receptors. Neuroscience 15, 553–562 (1985).

    Article  CAS  Google Scholar 

  27. Clark, E. A. & Hill, S. J. Sensitivity of histamine H 3 receptor agonist-stimulated [35S]GTPγ[S] binding to pertussis toxin. Eur. J. Pharmacol. 296, 223–225 (1996).

    Article  CAS  Google Scholar 

  28. Garbarg, M., Trung Tuong, M. D., Gros, C. & Schwartz, J.-C. Effects of histaminergic ligands on various biochemical indices of histaminergic neuron activity in rat brain. Eur. J. Pharmacol. 164 , 1–11 (1989).

    Article  CAS  Google Scholar 

  29. Sasse, A. et al. Novel partial agonists for the histamine H3 receptor with high in vitro and in vivo activity. J. Med. Chem. 42, 4269–4274 (1999).

    Article  CAS  Google Scholar 

  30. Yates, S. L. et al. Effects of selected histamine H3 receptor antagonists on tele-methylhistamine levels in rat cerebral cortex. Biochem. Pharmacol. 57, 1059–1066 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Dumoulin for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Arrang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morisset, S., Rouleau, A., Ligneau, X. et al. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408, 860–864 (2000). https://doi.org/10.1038/35048583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048583

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing