Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Nature
  • Published:

Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana

Abstract

The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration, The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome. The sequence of chromosomes 2 and 4 have been reported previously1,2 and that of chromosomes 1 and 3, together with an analysis of the complete genome sequence, are reported in this issue3,4,5. Analysis of the sequence of chromosome 5 yields further insights into centromere structure and the sequence determinants of heterochromatin condensation. The 5,874 genes encoded on chromosome 5 reveal several new functions in plants, and the patterns of gene organization provide insights into the mechanisms and extent of genome evolution in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FISH analysis of heterochromatin showing CEN5 features.
Figure 2: Sequence features of the heterochromatic knob region.

References

  1. Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761– 768 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Mayer, K. et al. Sequence and analysis of chromsome 4 of the plant Arabidopsis thaliana. Nature 402, 769– 777 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Theologis, A. et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408, 816– 820 (2000).

    Article  ADS  Google Scholar 

  4. Salanoubat, M. et al. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408, 820– 822 (2000).

    Article  CAS  Google Scholar 

  5. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408, 796–815 (2000).

    Article  ADS  Google Scholar 

  6. Choi, S. D., Creelman, R., Mullet, J. & Wing, R. A. Construction and characterisation of a bacterial artificial chromosome library from Arabidopsis thaliana. Weeds World 2, 17– 20 (1995).

    CAS  Google Scholar 

  7. Lui, Y.-G., Mitsukawa, N., Vazquez-Tello, A. & Whittier, R. F. Generation of a high-quality P1 library of Arabidopsis suitable for chromosome walking. Plant J. 7, 351– 358 (1995).

    Article  Google Scholar 

  8. Lui, Y.-G. et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl Acad. Sci. USA 96, 6535 –6540 (1999).

    Article  ADS  Google Scholar 

  9. Kotani, H., Hosouchi, T. & Tsuruoka, H. Structural analysis and complete physical map of Arabidopsis thaliana chromosome 5 including centromeric and telomeric regions. DNA Res. 6, 381– 386 (1999).

    Article  CAS  Google Scholar 

  10. Sato, S. et al. Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Res. 4, 215– 230 (1997).

    Article  CAS  Google Scholar 

  11. Sato, S. et al. Structural analysis of Arabidopsis thaliana chromosome 5. X. Sequence features of the regions of 3,076,755 bp covered by sixty P1 and TAC clones. DNA Res. 7, 31– 63 (2000).

    Article  CAS  Google Scholar 

  12. Lister, C. & Dean, C. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4, 745–750 ( 1993).

    Article  CAS  Google Scholar 

  13. Tutois, S. et al. Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana. Chrom. Res. 7, 143–156 ( 1999).

    Article  CAS  Google Scholar 

  14. Copenhaver, G. P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468– 2474 (1999).

    Article  CAS  Google Scholar 

  15. Fransz, P. F. et al. Cytogenetics for the model system Arabidopsis thaliana . Plant J. 13, 867– 876 (1998).

    Article  CAS  Google Scholar 

  16. Fransz, P. F. et al. Integrated cytogenetic map of chromosome arm 4S of A. thaliana : structural organisation of heterochromatic knob and centromere region. Cell 100, 367–376 (2000).

    Article  CAS  Google Scholar 

  17. The Cold Spring Harbor, Washington University in St Louis Genome Sequencing Centre and PE Biosystems Arabidopsis Genome Sequencing Consortium. The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100, 377–386 (2000).

    Article  Google Scholar 

  18. Ananiev, E. V., Philips, R. L. & Rines, H. W. Complex structures of knob DNA on maize chromosome 9: retroelement invasion into heterochromatin. Genetics 149, 2025–2037 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wakasugi, T. et al. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc. Natl Acad. Sci. USA 94, 5967–5972 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Royet, J., Bouwmeester, T. & Cohen, S. M. Notchless encodes a novel WD40 repeat containing protein that modulates notch signalling activity. EMBO J. 17, 7351–7360 (1998).

    Article  CAS  Google Scholar 

  21. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).

    Article  CAS  Google Scholar 

  22. Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D. & Koornneef, M. Arabidopsis thaliana: A model plant for genome analysis. Science 282, 662– 681 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Borodovsky, M. & Peresetsky, A. Deriving non-homogeneous DNA Markov chain models by cluster analysis algorithm minimizing multiple alignment entropy. Comput. Chem. 18, 259 –267 (1994).

    Article  CAS  Google Scholar 

  24. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  25. Hebsgaard, S. M. et al. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 24, 3439–3452 ( 1996).

    Article  CAS  Google Scholar 

  26. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  27. Apweiler, R. et al. INTERPRO. CCP 11 Newsletter 10 (cited March 2000) 〈http://www.ebi.ac.uk/interpro/〉 ( 2000).

  28. Frishman, D. & Mewes, H.-W. PEDANTic genome analysis. Trends Genet. 13, 415–416 (1997).

    Article  CAS  Google Scholar 

  29. Lima-de-Farier, A. Molecular Evolution and Organisation of the Chromosome (Elsevier, Amsterdam, 1983).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Kazusa DNA Research Institute Foundation, the National Science Foundation (NSF), the US Department of Agriculture (USDA) and the US Department of Energy (DOE), the USDA NRI Plant Genome Program, and the European Commission. Additional support came from the BBSRC (Biotechnology and Biological Sciences Research Council), GSF-Forschungszentrum f. Umwelt u. Gesundheit, BMBF (Bundesministerium f. Bildung, Forschung und Technologie), Plant Research International, Wageningen, Westvaco Corporation and David L. Luke III.

Author information

Authors and Affiliations

Consortia

Additional information

Correspondence and requests for materials should be addressed to M.B. (e-mail: michael.bevan@bbsrc.ac.uk). The annotated set of chromosome 5 genes is available at http://www.kazusa.or.jp/kaos/, http://www.mips.biochem.mpg.de/proj/thal/ and http://www.tigr.org/tdb/ath1/htmls/ath1.html.

A full list of authors appears at the end of this paper

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazusa DNA Research Institute., The Cold Spring Harbor and Washington University Sequencing Consortium., The European Union Arabidopsis Genome Sequencing Consortium. et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana . Nature 408, 823–826 (2000). https://doi.org/10.1038/35048507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048507

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing