Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Zebrafish genetics and vertebrate heart formation

Key Points

  • The zebrafish is an ideal model organism to study the development of vertebrate-specific organs, such as the heart, because it is amenable to both loss-of-function and gain-of-function analyses.

  • Zebrafish embryos are well suited to studies of heart development because, unlike mouse and chick embryos, they do not completely depend on a functional cardiovascular system. Their small size means that they receive sufficient oxygen by passive diffusion to survive even with severe cardiovascular defects. Zebrafish embryos also develop rapidly and are easy to analyse because of their optical clarity.

  • Mutagenesis screens have generated zebrafish mutants that have a range of developmental defects that span the different stages of heart development. These include:

     • Mutants that affect myocardial differentiation, such as swirl, one-eyed pinhead, faust and acerebellar

     • Mutants that affect endocardial differentiation, such as cloche

     • Mutants that affect the migration of myocardial and endocardial precursors, such as hands off, casanova, bonnie and clyde, miles apart and two-of-hearts

     • Mutants that affect the formation of the heart tube, such as heart and soul

     • Mutants that affect the formation of the cardiac chamber, such as one-eyed pinhead, faust, hands off and pandora

  • Analysis of the miles apart mutant has revealed a previously unknown role for the lysosphingolipid receptor, sphingosine 1-phosphate (S1P), in the migration of myocardial cells to the midline. The S1P receptor encoded by miles apart is required cell non-autonomously for this migration, although many questions regarding its role remain.

  • Together with studies in other vertebrate organisms, zebrafish genetics should provide new insights into heart stem-cell differentiation and contribute to novel diagnostic and therapeutic opportunities for human heart disorders.

Abstract

Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zebrafish heart development.
Figure 2: Cardia bifida.
Figure 3: Cardiac valve formation.

Similar content being viewed by others

References

  1. Whole issue. Development 123, 1–460 (1996).

  2. Kimmel, C. B. Genetics and early development of zebrafish. Trends Genet. 5, 283–288 (1989).

    CAS  PubMed  Google Scholar 

  3. Stainier, D. Y. R. & Fishman, M. C. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev. Biol. 153, 91–101 (1992).

    CAS  PubMed  Google Scholar 

  4. Harvey, R. P. & Rosenthal, N. Heart development (Academic, San Diego, 1999).

    Google Scholar 

  5. Walsh, E. C. & Stainier, D. Y. Cardiac Development in Vertebrates (eds Haddad, G. G., Xu, T. & Lenfant, C.) (in the press).

  6. Warren, K. S., Wu. J. C., Pinet, F. & Fishman, M. C. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Phil. Trans. R. Soc. Lond. 355, 939–944 (2000).

    CAS  Google Scholar 

  7. Bodmer, R., Jan, L. Y. & Jan, Y. N. A new homeobox-containing gene, msh-2 (tinman), is transiently expressed early during mesoderm formation in Drosophila. Development 110, 661–669 (1990).

    CAS  PubMed  Google Scholar 

  8. Harvey, R. P., Biben, C. & Elliott, D. A. in Heart Development (eds Harvey, R. & Rosenthal, N.) 111–130 (Academic, San Diego, 1999).

    Google Scholar 

  9. Damante, G. et al. Sequence-specific DNA recognition by the thyroid transcription factor-1 homeodomain. Nucleic Acids Res. 22, 3075–3083 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Komuro, I. & Izumo, S. Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc. Natl Acad. Sci. USA 90, 8145–8149 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lints, T. J., Parsons, L. M., Hartley, L., Lyons, I. & Harvey, R. P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 969 (1993).References 10 and 11 report the isolation of a mouse tinman homologue that is expressed in the developing heart. They represent a turning point for the molecular genetic studies of vertebrate heart formation.

    CAS  PubMed  Google Scholar 

  12. Tonissen, K. F., Drysdale, T. A., Lints, T. J., Harvey, R. P. & Krieg, P. A. XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. Dev. Biol. 162, 325–328 (1994).

    CAS  PubMed  Google Scholar 

  13. Evans, S. M., Yan, W., Murillo, M. P., Ponce, J. & Papalopulu, N. tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. Development 121, 3889–3899 (1995).

    CAS  PubMed  Google Scholar 

  14. Schultheiss, T. M., Xydas, S. & Lassar, A. B. Induction of avian cardiac myogenesis by anterior endoderm. Development 121, 4203–4214 (1995).

    CAS  PubMed  Google Scholar 

  15. Lee, K. H., Xu, Q. & Breitbart, R. E. A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev. Biol. 180, 722–731 (1996).

    CAS  PubMed  Google Scholar 

  16. Chen, J. -N. & Fishman, M. C. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809–3816 (1996).

    CAS  PubMed  Google Scholar 

  17. Lyons, I. et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2-5. Genes Dev. 9, 1654–1666 (1995).

    CAS  PubMed  Google Scholar 

  18. Schott, J. J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108–111 (1998).This study reports the identification of mutations in human NKX2.5 and their linkage to various forms of congenital heart disease.

    CAS  PubMed  Google Scholar 

  19. Benson, D. W. et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka, M. et al. Complex modular cis-acting elements regulate expression of the cardiac specifying homeobox gene Csx/Nkx2.5. Development 126, 1439–1450 (1999).

    CAS  PubMed  Google Scholar 

  21. Fu, Y., Yan, W., Mohun, T. J. & Evans, S. M. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 125, 4439–4449 (1998).

    CAS  PubMed  Google Scholar 

  22. Grow, M. W. & Krieg, P. A. tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2-3 and XNkx2-5. Dev. Biol. 204, 187–196 (1998).

    CAS  PubMed  Google Scholar 

  23. Frasch, M. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374, 464–467 (1995).

    CAS  PubMed  Google Scholar 

  24. Schlange, T., Andree, B., Arnold, H. H. & Brand, T. BMP2 is required for early heart development during a distinct time period. Mech. Dev. 91, 259–270 (2000).

    CAS  PubMed  Google Scholar 

  25. Schultheiss, T. M., Burch, J. B. & Lassar, A. B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11, 451–462 (1997).

    CAS  PubMed  Google Scholar 

  26. Zhang, H. & Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986 (1996).

    CAS  PubMed  Google Scholar 

  27. Searcy, R. D., Vincent, E. B., Liberatore, C. M. & Yutzey, K. E. A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125, 4461–4470 (1998).

    CAS  PubMed  Google Scholar 

  28. Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M. & Schulte-Merker, S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466 (1997).

    CAS  PubMed  Google Scholar 

  29. Schier, A. F., Neuhauss, S. C., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342 (1997).

    CAS  PubMed  Google Scholar 

  30. Zhang, J., Talbot, W. S. & Schier, A. F. Positional cloning identifies zebrafish One-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    CAS  PubMed  Google Scholar 

  31. Gritsman, K. et al. The EGF-CFC protein One-eyed pinhead is essential for Nodal signaling. Cell 97, 121–132 (1999).

    CAS  PubMed  Google Scholar 

  32. Reiter, J. F. et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13, 2983–2995 (1999).Reports the cardiac phenotype of a gata5 mutation in zebrafish and the ability of this gene to generate ectopic heart-like structures when overexpressed.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reifers, F., Walsh, E. C., Leger, S., Stainier, D. Y. & Brand, M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127, 225–235 (2000).

    CAS  PubMed  Google Scholar 

  34. Lien, C. L. et al. Control of early cardiac-specific transcription of Nkx2-5 by a GATA- dependent enhancer. Development 126, 75–84 (1999).

    CAS  PubMed  Google Scholar 

  35. Alexander, J. & Stainier, D. Y. R. in Heart Development (eds Harvey, R. & Rosenthal, N.) 91–110 (Academic, San Diego, 1999).

    Google Scholar 

  36. Charron, F., Paradis, P., Bronchain, O., Nemer, G. & Nemer, M. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol. Cell. Biol. 19, 4355–4365 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    CAS  PubMed  Google Scholar 

  38. Molkentin, J. D., Lin, Q., Duncan, S. A. & Olson, E. N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061–1072 (1997).

    CAS  PubMed  Google Scholar 

  39. Dale, L., Howes, G., Price, B. M. & Smith, J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585 (1992).

    CAS  PubMed  Google Scholar 

  40. Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. & Hogan, B. L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647 (1992).

    CAS  PubMed  Google Scholar 

  41. Nguyen, V. H. et al. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev. Biol. 199, 93–110 (1998).

    CAS  PubMed  Google Scholar 

  42. Erter, C. E., Solnica-Krezel, L. & Wright, C. V. Zebrafish Nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev. Biol. 204, 361–372 (1998).

    CAS  PubMed  Google Scholar 

  43. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require Nodal-related signals. Nature 395, 181–185 (1998).

    CAS  PubMed  Google Scholar 

  44. Rebagliati, M. R., Toyama, R., Haffter, P. & Dawid, I. B. cyclops encodes a Nodal-related factor involved in midline signaling. Proc. Natl Acad. Sci. USA 95, 9932–9937 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Osada, S. I. & Wright, C. V. Xenopus Nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126, 3229–3240 (1999).

    CAS  PubMed  Google Scholar 

  46. Schier, A. F. & Shen, M. M. Nodal signalling in vertebrate development. Nature 403, 385–389 (2000).

    CAS  PubMed  Google Scholar 

  47. Alexander, J. & Stainier, D. Y. R. A molecular pathway leading to endoderm formation in zebrafish. Curr. Biol. 9, 1147–1157 (1999).

    CAS  PubMed  Google Scholar 

  48. Schultheiss, T. M. & Lassar, A. B. in Heart Development (eds Harvey, R. & Rosenthal, N.) 52–64 (Academic, San Diego, 1999).

    Google Scholar 

  49. Lough, J. & Sugi, Y. Endoderm and heart development. Dev. Dyn. 217, 327–342 (2000).

    CAS  PubMed  Google Scholar 

  50. Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. & Fishman, M. C. cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–3150 (1995).

    CAS  PubMed  Google Scholar 

  51. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    CAS  PubMed  Google Scholar 

  52. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    CAS  PubMed  Google Scholar 

  53. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    CAS  PubMed  Google Scholar 

  54. Liao, W. et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124, 381–389 (1997).

    CAS  PubMed  Google Scholar 

  55. Parker, L. & Stainier, D. Y. Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. Development 126, 2643–2651 (1999).

    CAS  PubMed  Google Scholar 

  56. Liao, W., Ho, C., Yan, Y. L., Postlethwait, J. & Stainier, D. Y. Hhex and Scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 127, 4303–4313 (2000).

    CAS  PubMed  Google Scholar 

  57. Liao, E. C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621–626 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhong, T. P., Rosenberg, M., Mohideen, M. A., Weinstein, B. & Fishman, M. C. GRIDLOCK, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    CAS  PubMed  Google Scholar 

  59. Weinstein, B. M., Stemple, D. L., Driever, W. & Fishman, M. C. GRIDLOCK, a localized heritable vascular patterning defect in the zebrafish. Nature Med. 1, 1143–1147 (1995).

    CAS  PubMed  Google Scholar 

  60. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4 Cell 93, 741–753 (1998).

    CAS  PubMed  Google Scholar 

  61. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).

    CAS  PubMed  Google Scholar 

  62. Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).

    CAS  PubMed  Google Scholar 

  63. George, E. L., Baldwin, H. S. & Hynes, R. O. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90, 3073–3081 (1997).

    CAS  PubMed  Google Scholar 

  64. Alexander, J., Rothenberg, M., Henry, G. L. & Stainier, D. Y. R. . casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol. 215, 343–357 (1999).

    CAS  PubMed  Google Scholar 

  65. Kikuchi, Y. et al. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 14, 1279–1289 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Peyriéras, N., Strähle, U. & Rosa, F. Conversion of zebrafish blastomeres to an endodermal fate by TGF-beta-related signaling. Curr. Biol. 8, 783–786 (1998).

    PubMed  Google Scholar 

  67. Yelon, D. et al. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573–2582 (2000).

    CAS  PubMed  Google Scholar 

  68. Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D. Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195 (2000).A nice illustration of the power of zebrafish genetics to uncover new players in heart formation.

    CAS  PubMed  Google Scholar 

  69. An, S., Zheng, Y. & Bleu, T. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275, 288–296 (2000).

    CAS  PubMed  Google Scholar 

  70. Goodemote, K. A., Mattie, M. E., Berger, A. & Spiegel, S. Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. J. Biol. Chem. 270, 10272–10277 (1995).

    CAS  PubMed  Google Scholar 

  71. Pyne, S. & Pyne, N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349, 385–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y. & Howard, K. The Drosophila protein Wunen repels migrating germ cells. Nature 385, 64–67 (1997).

    CAS  PubMed  Google Scholar 

  73. Forbes, A. & Lehmann, R. Cell migration in Drosophila. Curr. Opin. Genet. Dev. 9, 473–478 (1999).

    CAS  PubMed  Google Scholar 

  74. Roberts, R., Sciorra, V. A. & Morris, A. J. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J. Biol. Chem. 273, 22059–22067 (1998).

    CAS  PubMed  Google Scholar 

  75. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    CAS  PubMed  Google Scholar 

  76. Stainier, D. Y., Lee, R. K. & Fishman, M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31–40 (1993).

    CAS  PubMed  Google Scholar 

  77. Yelon, D., Horne, S. A. & Stainier, D. Y. Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214, 23–37 (1999).

    CAS  PubMed  Google Scholar 

  78. Black, B. L. & Olson, E. N. in Heart Development (eds Harvey, R. & Rosenthal, N.) 131–142 (Academic, San Diego, 1999).

    Google Scholar 

  79. Parmacek, M. S. & Leiden, J. M. in Heart Development (eds Harvey, R. & Rosenthal, N.) 291–306 (Academic, San Diego, 1999).

    Google Scholar 

  80. Begemann, G. & Ingham, P. W. Developmental regulation of Tbx5 in zebrafish embryogenesis. Mech. Dev. 90, 299–304 (2000).

    CAS  PubMed  Google Scholar 

  81. Bruneau, B. G. et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt–Oram syndrome. Dev. Biol. 211, 100–108 (1999).

    CAS  PubMed  Google Scholar 

  82. Ruvinsky, I., Oates, A. C., Silver, L. M. & Ho, R. K. The evolution of paired appendages in vertebrates: T-box genes in the zebrafish. Dev. Genes Evol. 210, 82–91 (2000).

    CAS  PubMed  Google Scholar 

  83. Ahn, D., Ruvinsky, I., Oats, A.C., Silver, L.M. & Ho, R.K. Tbx20, a new vertebrate T-box gene expressed in the cranial motor neurons and developing cardiovascular structures in zebrafish. Mech. Dev. 95, 253–258 (2000).

    CAS  PubMed  Google Scholar 

  84. Griffin, K. J. et al. A conserved role for H15-related T-box transcription factors in zebrafish and Drosophila heart formation. Dev. Biol. 218, 235–247 (2000).

    CAS  PubMed  Google Scholar 

  85. Lin, Q., Schwarz, J., Bucana, C. & Olson, E. N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Horb, M. E. & Thomsen, G. H. Tbx5 is essential for heart development. Development 126, 1739–1751 (1999).

    CAS  PubMed  Google Scholar 

  87. Yutzey, K. E., Rhee, J. T. & Bader, D. Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120, 871–883 (1994).

    CAS  PubMed  Google Scholar 

  88. Yutzey, K. E. & Bader, D. Diversification of cardiomyogenic cell lineages during early heart development. Circ. Res. 77, 216–219 (1995).

    CAS  PubMed  Google Scholar 

  89. Moss, J. B. et al. Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev. Biol. 199, 55–71 (1998).

    CAS  PubMed  Google Scholar 

  90. Xavier-Neto, J. et al. A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart. Development 126, 2677–2687 (1999).

    CAS  PubMed  Google Scholar 

  91. Xavier-Neto, J., Shapiro, M. D., Houghton, L. & Rosenthal, N. Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev. Biol. 219, 129–141 (2000).

    CAS  PubMed  Google Scholar 

  92. Yelon, D. & Stainier, D. Y. Patterning during organogenesis: genetic analysis of cardiac chamber formation. Semin. Cell Dev. Biol. 10, 93–98 (1999).

    CAS  PubMed  Google Scholar 

  93. Alexander, J., Stainier, D. Y. R. & Yelon, D. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. Dev. Genet. 22, 288–299 (1998).Describes a fast and efficient method for screening embryonic mutations in zebrafish

    CAS  PubMed  Google Scholar 

  94. Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet. 16, 154–60 (1997); erratum 16, 410 (1997).

    CAS  PubMed  Google Scholar 

  95. Danos, M. C. & Yost, H. J. Role of notochord in specification of cardiac left–right orientation in zebrafish and Xenopus. Dev. Biol. 177, 96–103 (1996).

    CAS  PubMed  Google Scholar 

  96. Bisgrove, B. W., Essner, J. J. & Yost, H. J. Regulation of midline development by antagonism of Lefty and Nodal signaling. Development 126, 3253–3262 (1999).

    CAS  PubMed  Google Scholar 

  97. Yan, Y. T. et al. Conserved requirement for EGF-CFC genes in vertebrate left–right axis formation. Genes Dev. 13, 2527–2537 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yost, H. J. Diverse initiation in a conserved left–right pathway? Curr. Opin. Genet. Dev. 9, 422–426 (1999).

    CAS  PubMed  Google Scholar 

  99. Hyatt, G. A. et al. Retinoic acid establishes ventral retinal characteristics. Development 122, 195–204 (1996).

    CAS  PubMed  Google Scholar 

  100. Hyatt, B. A. & Yost, H. J. The left–right coordinator: the role of Vg1 in organizing left–right axis formation. Cell 93, 37–46 (1998).

    CAS  PubMed  Google Scholar 

  101. Chen, J. -N. et al. Left–right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373–4382 (1997).

    CAS  PubMed  Google Scholar 

  102. Chin, A. J., Tsang, M. & Weinberg, E. S. Heart and gut chiralities are controlled independently from initial heart position in the developing zebrafish. Dev. Biol. 227, 403–421 (2000).

    CAS  PubMed  Google Scholar 

  103. Eisenberg, L. M. & Markwald, R. R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res. 77, 1–6 (1995).

    CAS  PubMed  Google Scholar 

  104. Nakajima, Y., Yamagishi, T., Hokari, S. & Nakamura, H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat. Rec. 258, 119–127 (2000).

    CAS  PubMed  Google Scholar 

  105. Mjaatvedt, C. H., Yamamura, H., Capehart, A. A., Turner, D. & Markwald, R. R. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 202, 56–66 (1998).

    CAS  PubMed  Google Scholar 

  106. Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development 125, 327–337 (1998).

    CAS  PubMed  Google Scholar 

  107. Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stainier, D. Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996).This paper, together with Reference 116 , reports the results of the first large-scale screens for mutations that affect the cardiovascular system in zebrafish.

    CAS  PubMed  Google Scholar 

  109. Nguyen-Tran, V. T. et al. A novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages. Cell 102, 671–682 (2000).

    CAS  PubMed  Google Scholar 

  110. Hu, N., Sedmera, D., Yost, H. J. & Clark, E. B. Structure and function of the developing zebrafish heart. Anat. Rec. 260, 148–157 (2000).

    CAS  PubMed  Google Scholar 

  111. Heasman, J., Kofron, M. & Wylie, C. Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222, 124–134 (2000).

    CAS  PubMed  Google Scholar 

  112. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).Describes and validates the use of morpholinos to downregulate the function of certain genes transiently in zebrafish embryos.

    CAS  PubMed  Google Scholar 

  113. Summerton, J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim. Biophys. Acta 1489, 141–158 (1999).

    CAS  PubMed  Google Scholar 

  114. Scheer, N. & Campos-Ortega, J. A. Use of the Gal4–UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80, 153–158 (1999).

    CAS  PubMed  Google Scholar 

  115. Halloran, M. C. et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127, 1953–1960 (2000).

    CAS  PubMed  Google Scholar 

  116. Chen, J. -N. et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Past and present members of the lab contributed substantially to the ideas and work summarized here. D. Yelon, E. Walsh, S. Horne, A. Chin, N. Osborne and T. Bartman provided helpful comments on the manuscript. Work in the lab is supported by grants from the NIH and AHA, as well as the Packard, Sandler and Mabel Gee foundations.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

MyoD

Myogenin

Myf5

tinman

Nk2 family

nkx2.5

DPP

Bmp2

swr

fau

ace

Bmp2b

Oep

Gata5

Fgf8

Gata4

Gata5

Gata6

Vegfr2

hhex

scl

grl

fibronectin

han

cas

bon

mil

nat

hand2

wunen

slb

Wnt11

troponin T

tropomyosin

myosin

mef2

tbx5

hrt

pandora

tricuspid atresia

pulmonic stenosis

aortic stenosis

versican

vinculin

FURTHER INFORMATION

Fishscope

Tübingen zebrafish stock centre

ZFIN

Didier Stainier's lab

Zebrafish webserver at Massachusetts General Hospital

Trans-NIH zebrafish initiative

Tübingen map of the zebrafish genome

ENCYCLOPEDIA OF LIFE SCIENCES

Zebrafish embryo as a developmental system

Glossary

ANDROGENESIS

Development of an embryo from a fertililized egg, when the embryo's entire genetic material comes from the sperm.

GYNOGENESIS

Development of an embryo from a fertilized egg, when the embryo's entire genetic material comes from the egg.

SMAD

Transcriptional effector of transforming growth factor β (TGFβ) signalling. Upon phosphorylation by TGFβ receptors, Smads form a transcriptional complex that enters the nucleus. Different Smads are phosphorylated in response to different TGFβ ligands and directly regulate the expression of target genes.

NODAL

A ligand of the transforming growth factor β family that signals through the Smad signal-transduction pathway.

CELL AUTONOMOUS

A genetic trait in which only genotypically mutant cells show the mutant phenotype.

HYPOMORPHIC MUTATION

A mutation that does not completely eliminate the wild-type function of a gene and therefore causes a less severe phenotype than a loss-of-function (or null) mutation.

AORTIC BIFURCATION

The process whereby the paired lateral dorsal aortae fuse into a single medial aorta in the anterior trunk region.

MESP1

Mesp1 encodes a basic helix–loop–helix (bHLH) transcription factor and is expressed in the migrating myocardial cells of the mouse.

LYSOSPHINGOLIPIDS

Also called lysophospholipids, these lipids belong to the sphingolipid class and are partly generated by the enzymatic cleavage of membrane lipids. They include molecules such as lysophosphatidic acid and sphingosine 1-phosphate.

CELL NON-AUTONOMOUS

A cell non-autonomous trait is one in which genotypically mutant cells cause other cells (regardless of their genotype) to show a mutant phenotype.

DOMINANT INTERFERENCE

Technique by which, in this case, a transcriptional activator was changed to a repressor through the generation of a chimeric protein.

LEADER SEQUENCE

The non-translated sequence at the 5′ end of mRNA that precedes the initiation codon.

CARDIAC JELLY

The wide extracellular matrix between the myocardium and endocardium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stainier, D. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 39–48 (2001). https://doi.org/10.1038/35047564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing