Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the bacteriophage φ29 DNA packaging motor

Abstract

Motors generating mechanical force, powered by the hydrolysis of ATP, translocate double-stranded DNA into preformed capsids (proheads) of bacterial viruses1,2 and certain animal viruses3. Here we describe the motor that packages the double-stranded DNA of the Bacillus subtilis bacteriophage φ29 into a precursor capsid. We determined the structure of the head–tail connector—the central component of the φ29 DNA packaging motor—to 3.2 Å resolution by means of X-ray crystallography. We then fitted the connector into the electron densities of the prohead and of the partially packaged prohead as determined using cryo-electron microscopy and image reconstruction analysis. Our results suggest that the prohead plus dodecameric connector, prohead RNA, viral ATPase and DNA comprise a rotary motor with the head–prohead RNA–ATPase complex acting as a stator, the DNA acting as a spindle, and the connector as a ball-race. The helical nature of the DNA converts the rotary action of the connector into translation of the DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM reconstructions.
Figure 2: Connector structure ribbon diagrams.
Figure 3: Cryo-EM density fitted with atomic structures.
Figure 4: The DNA packaging mechanism.

Similar content being viewed by others

References

  1. Hendrix, R. W. Symmetry mismatch and DNA packaging in large bacteriophages. Proc. Natl Acad. Sci. USA 75, 4779–4783 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Hendrix, R. W. Bacteriophage DNA packaging: RNA gears in a DNA transport machine. Cell 94, 147–150 (1998).

    Article  CAS  Google Scholar 

  3. Zhou, Z. H., Chen, D. H., Jakana, J., Rixon, F. J. & Chiu, W. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol. 73, 3210–3218 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson, D. L., Hickman, D. D. & Reilly, B. E. Structure of Bacillus subtilis bacteriophage φ29 and the length of φ29 deoxyribonucleic acid. J. Bacteriol. 91, 2081–2089 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tao, Y. et al. Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95, 431–437 (1998).

    Article  CAS  Google Scholar 

  6. Valpuesta, J. M. & Carrascosa, J. L. Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q. Rev. Biophys. 27, 107–155 (1994).

    Article  CAS  Google Scholar 

  7. Guo, P., Erickson, S. & Anderson, D. A small viral RNA is required for in vitro packaging of bacteriophage φ29 DNA. Science 236, 690–694 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Zhang, F. et al. Function of hexameric RNA in packaging of bacteriophage φ29 DNA in vitro. Mol. Cell 2, 141–147 (1998).

    Article  CAS  Google Scholar 

  9. Guo, P., Zhang, C., Chen, C., Garver, K. & Trottier, M. Inter-RNA interaction of phage φ29 pRNA to form a hexameric complex for viral DNA transportation. Mol. Cell 2, 149–155 (1998).

    Article  CAS  Google Scholar 

  10. Müller, D. J., Engel, A., Carrascosa, J. L. & Vélez, M. The bacteriophage φ29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution. EMBO J. 16, 2547–2553 (1997).

    Article  Google Scholar 

  11. Valpuesta, J. M., Fernández, J. J., Carazo, J. M. & Carrascosa, J. L. The three-dimensional structure of a DNA translocating machine at 10 Å resolution. Structure 7, 289–296 (1999).

    Article  CAS  Google Scholar 

  12. Valle, M. et al. Domain architecture of the bacteriophage φ29 connector protein. J. Mol. Biol. 288, 899–909 (1999).

    Article  CAS  Google Scholar 

  13. Guasch, A. et al. Crystallographic analysis reveals the 12-fold symmetry of the bacteriophage φ29 connector particle. J. Mol. Biol. 281, 219–225 (1998).

    Article  CAS  Google Scholar 

  14. Badasso, M. O. et al. Purification, crystallization, and initial X-ray analysis of the head-tail connector of bacteriophage φ29. Acta Crystallogr. D 56, 1187–1190 (2000).

    Article  CAS  Google Scholar 

  15. Vlcek, C. & Paces, V. Nucleotide sequence of the late region of Bacillus φ29 completes the 19285-bp sequence of φ29 genome. Comparison with the homologous sequence of phage PZA. Gene 46, 215–225 (1986).

    Article  CAS  Google Scholar 

  16. Grimes, S. & Anderson, D. RNA dependence of the bacteriophage φ29 DNA packaging ATPase. J. Mol. Biol. 215, 559–566 (1990).

    Article  CAS  Google Scholar 

  17. Donate, L. E., Valpuesta, J. M., Mier, C., Rojo, F. & Carrascosa, J. L. Characterization of an RNA-binding domain in the bacteriophage φ29 connector. J. Biol. Chem. 268, 20198–20204 (1993).

    CAS  PubMed  Google Scholar 

  18. Reinisch, K. M., Nibert, M. L. & Harrison, S. C. Structure of the reovirus core at 3.6 Å resolution. Nature 404, 960–967 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Ibarra, B. et al. Topology of the components of the DNA packaging machinery in the phage φ29 prohead. J. Mol. Biol. 298, 807–815 (2000).

    Article  CAS  Google Scholar 

  20. Guo, P., Peterson, C. & Anderson, D. Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage φ29. J. Mol. Biol. 197, 229–236 (1987).

    Article  CAS  Google Scholar 

  21. Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 12, 1303–1309 (1993).

    Article  CAS  Google Scholar 

  22. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Silverman, M. R. & Simon, M. I. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Rossmann, M. G. & Arnold, E. International Table for Crystallography Vol. F (International Union of Crystallography, Kluwer Academic, Dordrecht) (in the press).

  26. Baker, T. S. & Cheng, R. H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130 (1996).

    Article  CAS  Google Scholar 

  27. Bailey, S. et al. Phylogenetic analysis and secondary structure of the Bacillus subtilis bacteriophage RNA required for DNA packaging. J. Biol. Chem. 265, 22365–22370 (1990).

    CAS  PubMed  Google Scholar 

  28. Reid, R. J. D., Bodley, J. W. & Anderson, D. Identification of bacteriophage φ29 prohead RNA domains necessary for in vitro DNA-gp3 packaging. J. Biol. Chem. 269, 9084–9089 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Carrascosa for comments and discussions of this paper. We also thank the staff of CHESS, APS BioCARS and APS Structural Biology Center for assistance in data collection. This work was supported by the NSF (M.G.R.), the NIH (D.L.A. and T.S.B.), and an NSF Shared Instrumentation grant (T.S.B. and M.G.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rossmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, A., Tao, Y., Leiman, P. et al. Structure of the bacteriophage φ29 DNA packaging motor. Nature 408, 745–750 (2000). https://doi.org/10.1038/35047129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047129

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing