Letter | Published:

Mitochondrial genome variation and the origin of modern humans

Naturevolume 408pages708713 (2000) | Download Citation


  • A Corrigendum to this article was published on 29 March 2001


The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination1, high substitution rate2 and maternal mode of inheritance3. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations4 causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable5. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis6, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region7 in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Olivio, P. D., Van de Walle, M. J., Laipis, P. J. & Hauswirth, W. W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306, 400– 402 (1983).

  2. 2

    Brown, W. M., George, M. Jr & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Proc. Natl Acad. Sci. USA 76, 1967– 1971 (1979).

  3. 3

    Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 77, 6715–6719 (1980).

  4. 4

    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512– 526 (1993).

  5. 5

    Maddison, D. R., Ruvolo, M. & Swofford, D. L. Geographic origins of human mitochondrial DNA: phylogenetic evidence from control region sequences. Syst. Biol. 41, 111–124 (1992).

  6. 6

    Torroni, A. et al. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am. J. Hum. Genet. 62, 1137–1152 ( 1998).

  7. 7

    Kaessmann, H., Heissig, F., von Haeseler, A. & Paabo, S. DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genet. 22, 78 –81 (1999).

  8. 8

    Strimmer, K. & von Haesseler, A. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996).

  9. 9

    Sarich, V. M. & Wilson, A. C. Generation time and genomic evolution in primates. Science 179, 1144– 1147 (1973).

  10. 10

    Andrews, P. Evolution and environment in the Hominoidea. Nature 360, 641–646 (1992).

  11. 11

    Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917– 920 (1998).

  12. 12

    Awadalla, P., Eyre-Walker, A. & Smith, J. M. Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286, 2524– 2525 (1999).

  13. 13

    Eyre-Walker, A., Smith, N. H. & Smith, J. M. How clonal are human mitochondria? Proc. R. Soc. Lond. B 266, 477–483 (1999).

  14. 14

    Kumar, S., Hedrick, P. & Stoneking, M. Questioning evidence for recombination in human mitochondrial DNA. Science 288, 1931 ( 2000).

  15. 15

    Lewontin, R. C. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49, 49– 67 (1964).

  16. 16

    Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

  17. 17

    Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 ( 1987).

  18. 18

    Wolpoff, M. H. in The Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans (eds Mellars, P. & Stringer, C.) 62–108 (Princeton Univ. Press, Princeton, New Jersey, 1989).

  19. 19

    Horai, S., Hayasaka, K., Kondo, R., Tsugane, K. & Takahata, N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl Acad. Sci. USA 92, 532–536 ( 1995).

  20. 20

    Ruvolo, M. et al. Mitochondrial COII sequences and modern human origins. Mol. Biol. Evol. 10, 1115–1135 (1993).

  21. 21

    Templeton, A. R. Human origins and analysis of mitochondrial DNA sequences. Science 255, 737 (1992).

  22. 22

    Nei, M. Age of the common ancestor of human mitochondrial DNA. Mol. Biol. Evol. 9, 1176–1178 ( 1992).

  23. 23

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

  24. 24

    Zietkiewicz, E. et al. Genetic structure of the ancestral population of modern humans. J. Mol. Evol. 47, 146– 155 (1998).

  25. 25

    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 ( 1992).

  26. 26

    Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693– 709 (1993).

  27. 27

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

  28. 28

    Rozas, J. & Rozas, R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput. Appl. Biosci. 11, 621–625 (1995).

  29. 29

    Klein, R. G. The Human Career: Human Biological and Cultural Origins (Univ. Chicago Press, Chicago, 1989).

  30. 30

    Reider, M. J., Taylor, S. L., Tobe, V. O. & Nickerson, D. A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973 ( 1998).

Download references


We thank M. Stoneking for his advice regarding the analysis of recombination, and L. Cavalli-Sforza, G. Destro-Bisol, L. Excoffier, T. Jenkins, K. Kidd, J. Kidd, G. Klein, R. Mahabeer, V. Nasidze, E. Poloni, H. Soodyall, M. Stoneking, M. Voevoda and S. Wells for scmples. This work was supported by grants from Swedish Natural Sciences Research Council and Beijer Foundation.

Author information


  1. Department of Genetics and Pathology Section of Medical Genetics, Rudbeck Laboratory, University of Uppsala, Uppsala, S-751 85, Sweden

    • Max Ingman
    •  & Ulf Gyllensten
  2. Max Planck Institute for Evolutionary Anthropology, Inselstrasse 22, Leipzig, D-04103, Germany

    • Henrik Kaessmann
    •  & Svante Pääbo


  1. Search for Max Ingman in:

  2. Search for Henrik Kaessmann in:

  3. Search for Svante Pääbo in:

  4. Search for Ulf Gyllensten in:

Corresponding author

Correspondence to Ulf Gyllensten.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.