Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial dehalorespiration with chlorinated benzenes

Abstract

Chlorobenzenes are toxic, highly persistent and ubiquitously distributed environmental contaminants that accumulate in the food chain1. The only known microbial transformation of 1,2,3,5-tetrachlorobenzene (TeCB) and higher chlorinated benzenes is the reductive dechlorination to lower chlorinated benzenes under anaerobic conditions observed with mixed bacterial cultures2,3,4. The lower chlorinated benzenes can subsequently be mineralized by aerobic bacteria. Here we describe the isolation of the oxygen-sensitive strain CBDB1, a pure culture capable of reductive dechlorination of chlorobenzenes. Strain CBDB1 is a highly specialized bacterium that stoichiometrically dechlorinates 1,2,3-trichlorobenzene (TCB), 1,2,4-TCB, 1,2,3,4-TeCB, 1,2,3,5-TeCB and 1,2,4,5-TeCB to dichlorobenzenes or 1,3,5-TCB. The presence of chlorobenzene as an electron acceptor and hydrogen as an electron donor is essential for growth, and indicates that strain CBDB1 meets its energy needs by a dehalorespiratory process. According to their 16S rRNA gene sequences, strain CBDB1, Dehalococcoides ethenogenes5 and several uncultivated bacteria form a new bacterial cluster, of which strain CBDB1 is the first, so far, to thrive on a purely synthetic medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micrographs of strain CBDB1.
Figure 2: Phylogenetic affiliation of strain CBDB1 based on currently available 16S rRNA gene sequences.

Similar content being viewed by others

References

  1. Oliver, B. G. & Nicol, K. D. Chlorobenzenes in sediments, water, and selected fish from lakes Superior, Huron, Erie, and Ontario. Environ. Sci. Technol. 16, 532–536 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Tiedje, J. M., Boyd, S. A. & Fathepure, B. Z. Anaerobic degradation of chlorinated aromatic hydrocarbons. J. Ind. Microbiol. Suppl. 27, 117–127 (1987).

    CAS  Google Scholar 

  3. Fathepure, B. Z., Tiedje, J. M. & Boyd, S. A. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54, 327–330 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beurskens, J. E. M. et al. Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favorable reactions. Environ. Sci. Technol. 28, 701–706 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Maymó-Gatell, X., Chien, Y. T., Gossett, J. M. & Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568–1571 (1997).

    Article  Google Scholar 

  6. Holliger, C., Wohlfarth, G. & Diekert, G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22, 383–398 (1999).

    Article  Google Scholar 

  7. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. von Wintzingerode, F., Selent, B., Hegemann, W. & Göbel, U. B. Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl. Environ. Microbiol. 65, 283–286 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bosma, T. N. P., van der Meer, J. R., Schraa, G., Tros, M. E. & Zehnder, A. J. B. Reductive dechlorination of all trichloro- and dichlorobenzene isomers. FEMS Microbiol. Ecol. 53, 223–229 (1988).

    Article  CAS  Google Scholar 

  10. Holliger, C., Schraa, G., Stams, A. J. M. & Zehnder, A. J. B. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58, 1636–1644 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Middeldorp, P. J. M., de Wolf, J., Zehnder, A. J. B. & Schraa, G. Enrichment and properties of a 1,2,4-trichlorobenzene-dechlorinating methanogenic microbial consortium. Appl. Environ. Microbiol. 63, 1225–1229 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Adrian, L., Manz, W., Szewzyk, U. & Görisch, H. Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl. Environ. Microbiol. 64, 496–503 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adrian, L., Szewzyk, U. & Görisch, H. Bacterial growth linked to reductive dechlorination of trichlorobenzenes. Biodegradation (in the press).

  14. Giesbrecht, P., Kersten, T., Maidhof, H. & Wecke, J. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62, 1371–1414 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998).

    Article  CAS  Google Scholar 

  16. Pfennig, N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28, 283–288 (1978).

    Article  CAS  Google Scholar 

  17. Zehnder, A. J. B. & Wuhrmann, K. Titanium(III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194, 1165–1166 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Kalmbach, S., Manz, W. & Szewzyk, U. Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl. Environ. Microbiol. 63, 4164–4170 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bade, K., Manz, W. & Szewzyk, U. Behavior of sulfate reducing bacteria under oligotrophic conditions and oxygen stress in particle-free systems related to drinking water. FEMS Microbiol. Ecol. 32, 215–233 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tran and P. Wendler for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Adrian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adrian, L., Szewzyk, U., Wecke, J. et al. Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580–583 (2000). https://doi.org/10.1038/35046063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046063

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing