Electronics using hybrid-molecular and mono-molecular devices

Article metrics

Abstract

The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules—a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics—rectification, amplification and storage—was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The molecules described in the text.
Figure 2: The first two active three-terminal devices in molecular electronics.
Figure 3: Regimes of electronic transport as a function of the wire width δ and length L. λF is the de Broglie carrier wavelength in the contact electrodes (away from the constriction), λe the elastic mean free path in the wire and λinel the inelastic mean free path in the wire.
Figure 4: Representative example design of a hybrid molecular electronic device.
Figure 6: Illustration of the superposition rule operating in a pure tunnelling regime for a simple intramolecular circuit.
Figure 5: Variation of the inter-electrode distance of planar nanojunctions and the length of the synthesized molecular wires as a function of time.

References

  1. 1

    Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

  2. 2

    Riordan, M. & Hoddeson, L. Crystal Fire: The Birth of the Computer Age (W. W. Norton & Company, New York, 1997).

  3. 3

    Taube, H. The electron transfer between metal complexes: a retrospective. Science 226, 1028–1036 ( 1984).

  4. 4

    Patoux, C. et al. Long-range electronic coupling in bis(cyclometalated) ruthenium complexes. J. Am. Chem. Soc. 120, 3717– 3725 (1998).

  5. 5

    Davis, W. B., Svec, W. A., Ratner, M. A. & Wasielewski, M. R. Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 396, 60–63 ( 1998).

  6. 6

    Fraysse, S., Coudret, C. & Launay, J.-P. Synthesis and properties of dinuclear complexes with a photochromic bridge: switching ”ON” and ”OFF” an intervalence electron transfer. Eur. J. Inorg. Chem. 1581–1590 (2000).

  7. 7

    Patoux, C., Coudret, C., Launay, J.-P., Joachim, C. & Gourdon, A. Topological effects on intramolecular electron transfer via quantum interference. Inorg. Chem. 36, 5037–5049 (1997).

  8. 8

    Delamarche, E., Michel, B., Biebuyck, H. A. & Gerber, C. Golden interfaces: the surface of self-assembled monolayers. Adv. Mater. 8, 719–729 ( 1996).

  9. 9

    Mann, B. & Kuhn, H. Tunnelling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398– 4405 (1971).

  10. 10

    Geddes, N. J., Sambles, J. R., Davis, D. J., Parker, W. G. & Sandman, D. J. Fabrication and investigation of asymmetric current-voltage characteristics of a metal/Langmuir-Blodgett monolayer/metal structure. Appl. Phys. Lett. 56, 1916–1918 (1990).

  11. 11

    Metzger, R. M. et al. Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455–10466 (1997).

  12. 12

    Gimzewski, J. K., Stoll, E. P. & Schlittler, R. R. Scanning tunnelling microscopy on individual molecules of copper phthalocyanine adsorbed on polycrystalline silver surfaces. Surf. Sci. 181, 267–277 (1987).

  13. 13

    Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realised with the scanning tunnelling microscope. Nature 352, 600– 603 (1991).

  14. 14

    Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

  15. 15

    Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

  16. 16

    Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P. & Reifenberger, R. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B 52, 9071–9077 (1995).

  17. 17

    Reed, M. A. et al. The electrical measurement of molecular junctions. Ann. NY Acad. Sci. 852, 133–144 (1998).

  18. 18

    Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 ( 1997).

  19. 19

    Kerguelis, C. et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505– 12513 (1999).

  20. 20

    Bezryadin, A., Dekker, C. & Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997).

  21. 21

    Rousset, V., Joachim C., Rousset, B. & Fabre, N. Fabrication of co-planar metal-insulator-metal nanojunction with a gap lower than 10 nm. J. Phys. III 5, 1983–1989 (1995).

  22. 22

    Di Fabrizio, E. et al. Fabrication of 5 nm resolution electrodes for molecular devices by means of electron beam lithography. Jpn. J. Appl. Phys. 36, L70–L72 ( 1997).

  23. 23

    Yanson, A. I., Yanson, I. K. & van Ruitenbeek, J. M. Observation of shell structure in sodium nanowires. Nature 400, 144–146 (1999).

  24. 24

    Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 ( 2000).

  25. 25

    Tans, S. J. et al. Individual single wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

  26. 26

    Ebbesen, T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 ( 1996).

  27. 27

    Cholet, S., Joachim, C., Martinez, J. P. & Rousset, B. Fabrication of co-planar metal-insulator-metal nanojunction down to 5 nm. Eur. Phys. J. Appl. Phys. 8, 139– 145 (1999).

  28. 28

    Bachtold, A. et al. Contacting carbon nanotubes selectively with low Ohmic contact for four-probe electric measurement. Appl. Phys. Lett. 73, 274–276 (1998).

  29. 29

    Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

  30. 30

    Avouris, Ph. et al. in Proceedings of “Nanotube 1999” (Plenum, New York, in the press).

  31. 31

    Mujica, V., Kemp, M., Roitberg, A. & Ratner, M. A. Current-voltage characteristics of molecular wires: eigenvalue staircase, Coulomb blockade and rectification. J. Chem. Phys. 104, 7296 –7305 (1996).

  32. 32

    Porath, D. & Milo, O. Single electron tunnelling and level spectroscopy of isolated C60 molecules. J. Appl. Phys. 81, 2241–2244 ( 1997).

  33. 33

    Magoga, M. & Joachim, C. Conductance and transparence of long molecular wires. Phys. Rev. B 56, 4722 –4729 (1997).

  34. 34

    Samanta, M. P., Tian, W., Datta, S., Henderson, J. I. & Kubiak, C. P. Electronic conduction through organic molecules. Phys. Rev. B 53, R7626– R7629 (1996).

  35. 35

    Olson, M. et al. A conformation study of the influence of vibration conduction in molecular wires. Phys. Chem. B 102, 941 –947 (1998).

  36. 36

    Yaliraki, S. N., Kemp, M. & Ratner, M. A. Conductance of molecular wires: influence of molecule-electrode binding. J. Am. Chem. Soc. 121, 3428– 3434 (1999).

  37. 37

    Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular devices. Phys. Rev. Lett. 84, 979–982 (2000).

  38. 38

    Joachim, C. & Vinuesa, J. Length dependence of the transparence (conductance) of a molecular wire. Europhys. Lett. 33, 635–640 (1996).

  39. 39

    Lang, N. D. & Avouris, Ph. Oscillatory conductance of carbon-atom wires. Phys. Rev. Lett. 81, 3515– 3518 (1998).

  40. 40

    Magoga, M. & Joachim, C. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B 59, 16011–16020 (1999).

  41. 41

    Lang, N. D. Resistance of atomic wires. Phys. Rev. B 52, 5335–5342 (1995).

  42. 42

    Ness, H. & Fisher, A. J. Non-perturbative evaluation of STM tunneling probabilities from ab-initio calculations. Phys. Rev.B 56, 12462–12481 ( 1997).

  43. 43

    Collins, P. G., Zetti, A., Bando, H., Thess, A. & Smalley, R. E. Nanotube nanodevices. Science 278, 100–103 (1997).

  44. 44

    Hu, J. T., Min, O. Y., Yang, P. D. & Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48– 51 (1999).

  45. 45

    Yao, Z., Postman, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402 , 273–276 (1999).

  46. 46

    Léonard, F. & Tersoff, J. Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999).

  47. 47

    Fischer, C. M., Burghard, M., Roth, S. & von Klitzing, K. Organic quantum wells: molecular rectification and single electron tunnelling. Europhys. Lett. 28, 129–134 (1994).

  48. 48

    Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

  49. 49

    Manoharan, H. G., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512– 515 (2000).

  50. 50

    Sangregorio, S., Ohm, T., Paulsen, C., Sessoli, R. & Gatteschi, D. Quantum tunnelling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78, 4645– 4648 (1997).

  51. 51

    Kahn, O. & Launay, J. P. Molecular bistability: An overview. Chemtronics 3, 140–151 (1988).

  52. 52

    Mathews, R. H. et al. A new RTD-FET logic family. Proc. IEEE 87, 596–605 (1999).

  53. 53

    Gao, H. J. et al. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 84, 1780 –1783 (2000).

  54. 54

    Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550– 1552 (1999).

  55. 55

    Carter, F. L. The molecular device computer: point of departure for large scale cellular automata. Physica D 10, 175– 194 (1984).

  56. 56

    Higelin, D. & Sixl, H. Spectroscopystudies of the photochromism of N-salicylideneaniline mixed crystals and glasses. Chem. Phys. 77, 391–396 ( 1983).

  57. 57

    Joachim, C. & Launay, J. P. Bloch effective Hamiltonian for the possibility of molecular switching in the ruthenium-bipyridylbutadiene-ruthenuim system. Chem. Phys. 109, 93– 99 (1986).

  58. 58

    Hush, N. S., Wong, A. T., Bacskay, G. B. & Riemers, J. R. Electron and energy transfer through bridged systems: VI. molecular switches. J. Am. Chem. Soc. 112, 4192– 4197 (1990).

  59. 59

    Gilat, S. L., Kawai, H. S. & Lehn, J. M. Light-triggered electrical and optical switching devices. J. Chem. Soc. Chem. Commun. 1439– 1442 (1993).

  60. 60

    Bissel, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 ( 1994).

  61. 61

    Girard, C., Dereux, A. & Joachim, C. Photonic transfer through subwavelength optical waveguide. Europhys. Lett. 44, 686– 692 (1998).

  62. 62

    Goldhaber-Gordon, D., Montemerlo, M. S., Love, J. C., Opiteck, G. J. & Ellenbogen, J. C. Overview of nanoelectronic devices. Proc. IEEE 85, 521– 539 (1997).

  63. 63

    Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49– 52 (1998).

  64. 64

    Joachim, C., Gimzewski, J. K. & Tang, H. Physical principles of the single C60 transistor effect. Phys. Rev. B 58, 16407– 16417 (1998).

  65. 65

    Brugger, J., Beljakovic, G., Despont, M., de Rooij, N. F. & Vettiger, P. Silicon micro/nanomechanical device fabrication based on focused ion beam surface modification and KOH etching. J. Microelec. Eng. 35, 401– 404 (1997).

  66. 66

    Aviram, A. Molecules for memory, logic and amplification. J. Am. Chem. Soc. 110, 5687–5692 ( 1988).

  67. 67

    Tour, J. M., Rulian, W. & Schumm, J. S. Extended orthogonally fused conducting oligomers for molecular electronic devices. J. Am. Chem. Soc. 113, 7064–7066 (1991).

  68. 68

    Diers, J. R. et al. ESR characterisation of oligomeric thiophene materials. Chem. Mater. 6, 327–332 (1994).

  69. 69

    Treboux, G., Lapstun, P. & Silverbrook, K. Conductance in nanotube Y-junctions. Chem. Phys. Lett. 306, 402–406 (1999).

  70. 70

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 ( 1999).

  71. 71

    Compano, R., Molenkamp, L. & Paul, D. J. (eds) Technology Roadmap for European Nanoelectronics (European Commission, IST Program, Brussels, 1999).

  72. 72

    Nakamura, Y., Pashkin, Yu. A. & Tsai, T. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 –788 (1999).

  73. 73

    Landauer, R. Can we switch by control of quantum mechanical transmission? Phys. Today 119–121 (1989).

  74. 74

    Keyes, R. W. Lighting up logic. Nature 362, 289– 290 (1993).

  75. 75

    Washburn, S., Schmid, H., Kern, D. & Webb, R. A. Normal-metal Aharonov-Bohm effect in the presence of a transverse electric field. Phys. Rev. Lett. 59, 1791–1794 ( 1987).

  76. 76

    Langlais, V. et al. Spatially resolved tunnelling along a molecular wire. Phys. Rev. Lett. 83, 2809–2812 (1999).

  77. 77

    Simmons, J. G. Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

  78. 78

    Lewickit, G. & Mead, C. A. Experimental determination of the E-k relationship in electron tunnelling. Phys. Rev. Lett. 16, 939–941 (1966).

  79. 79

    Magoga, M. & Joachim, C. Minimal attenuation for tunnelling through a molecular wire. Phys. Rev. B 57, 1820–1823 (1998).

  80. 80

    Tour, J. M., Kozaki M. & Seminario, J. M. Molecular scale electronics: a synthetic/computational approach to digital computing. J. Am. Chem. Soc. 120, 8486– 8493 (1998).

  81. 81

    Sugiura, K. I., Tanaka, H., Matsumoto, T., Kawai, T. & Sakata, Y. A mandala-patterned bandanna-shaped porphyrin oligomer, C1244H1350N84Ni 20O88, having a unique size and geometry. Chem. Lett. 1193–1194 (1999).

  82. 82

    Wada, Y. Atom electronics: a proposal of atom/molecule switching devices. Ann. NY Acad. Sci. 852, 257–276 (1998).

  83. 83

    Menon, M. & Srivastava, D. Carbon nanotube “T-junctions”: nanoscale metal-semiconductor-metal contact devices. Phys. Rev. Lett. 79, 4453–4456 ( 1997).

  84. 84

    Stipe, B. C., Rezaei, M. A. & Ho, W. Inducing and viewing the rotation motion of a single molecule. Science 279, 1907–1909 (1998).

  85. 85

    Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 ( 1998).

  86. 86

    Guo, L., Krauss, P. R. & Chou, S. Y. Nanoscale silicon field effect transistors fabricated using imprint lithography. Appl. Phys. Lett. 71, 1881–1883 (1997).

  87. 87

    Lüthi, R. et al. Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Appl. Phys. Lett. 75, 1314–1316 (1999).

  88. 88

    Kratschmer, E. et al. An electron-beam microcolumn with improved resolution beam current and stability. J. Vac. Sci. Technol. B 13, 2498–2503 (1995).

  89. 89

    Lefebvre, J., Lynch, J. F., Llaguno, M., Radosavljevic, M. & Johnson, A. T. Single-wall carbon nanotube circuits assembled with an atomic force microscope. Appl. Phys. Lett. 75, 3014–3016 (1999).

  90. 90

    Allara, D. L. et al. Evolution of strategies for self-assembly and hook up of molecule-based devices. Ann. NY Acad. Sci. 852, 349– 370 (1998).

  91. 91

    Gerdes, S., Ondarcuhu, T., Cholet, S. & Joachim, C. Combing a carbon nanotube on a flat metal-insulator-metal nanojunction. Europhys. Lett. 48, 292–298 (1999).

  92. 92

    M. Handschuh, M., Nettesheim, S. & Zenobi, R. Appl. Surf. Sci. 137, 125– 135 (1999).

  93. 93

    Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Edn Engl. 35, 1154–1196 (1996).

  94. 94

    Drain, C. M. & Lehn, J. M. Self-assembly of square multiporphyrin arrays by metal ion coordination. J. Chem. Soc. Chem. Commun. 2313–2315 (1994).

  95. 95

    Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283 , 1683–1688 (1999).

  96. 96

    Yazdani, A., Eigler, D. M. & Lang, N. D. Off-resonance conduction through atomic wires. Science 272, 1912–1924 ( 1996).

  97. 97

    Fischer, P. B. & Chou, S. Y. 10 nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope. Appl. Phys. Lett. 62, 2989– 2991 (1993).

  98. 98

    Bezryadin, A. & Dekker, C. Nanofabrication of electrodes with sub-5nm spacing for transport experiments on single molecules and metal clusters. J. Vac. Sci. Technol. A 15, 793– 799 (1997).

  99. 99

    Morpurgo, A. F., Marcus, C. M. & Robinson, D. B. Controlled fabrication of metallic electrodes with atomic separations. Appl. Phys. Lett. 74, 2084–2086 (1999).

  100. 100

    Dietz, T. M., Stallman, B. J., Kwan, W. S. V., Penneau, J. F. & Miller, L. L. Soluble oligoimide molecular lines which have persistent poly(anion radicals) and poly(dianions). J. Chem. Soc. Chem. Commun. 367–369 (1990).

  101. 101

    Kwan, W. S. V., Atanasoska, L. & Miller, L. L. Oligoimide monolayers covalently attached to gold. Langmuir 7, 1419–1425 (1991).

  102. 102

    Schumm, J. S., Pearson, D. L. & Tour, J. M. Iterative divergent/convergent doubling approach to linear conjugated oligomers. A rapid route potential molecular wire. Macromolecules 27, 2348–2350 (1994).

  103. 103

    Schumm, J. S., Pearson, D. L. & Tour, J. M. Iterative divergent/convergent doubling approach to linear conjugated oligomers. A rapid route to a 128 Å long potential molecular wire. Angew. Chem. Int. Edn Engl. 33, 1360–1363 (1994).

  104. 104

    Huang, S. & Tour, J. M. Rapid solid-phase synthesis of conjugated homo-oligomers and (AB) alternating block co-oligomers of precise length and constitution. J. Org. Chem. 64, 8898– 8906 (1999).

  105. 105

    Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett. 63, 2002– 2004 (1993).

  106. 106

    Kumar, A., Biebuyck, H. A. & Whitesides, G. M. Patterning SAMs: Applications in materials science. Langmuir 10, 1498–1511 (1994).

Download references

Acknowledgements

We thank the CEMES Molecular Electronics group and IBM Zurich's Science and Technology department for helpful discussions. This work has partially been supported through the European Union and the Swiss Federal Office for Education and Science by the Information Society Technologies–Future Emerging Technology (IST–FET) project Bottom Up Nanomachines.

Author information

Correspondence to C. Joachim.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.