Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global histone acetylation and deacetylation in yeast

Abstract

Histone acetyltransferases and deacetylases can be targeted to promoters to activate or repress genes. For example, the histone acetyltransferase GCN5 is part of a yeast multiprotein complex that is recruited by the DNA-binding activator protein GCN4 (refs 1, 2,3). The histone deacetylase RPD3 complex is recruited to DNA by the repressor UME6 (refs 4, 5); similar mechanisms exist in other eukaryotes6. However, deletion of RPD3 also increases expression of the PHO5 gene7 that is repressed by nucleosomes8,9, and regulated by GCN5 (ref. 10) but not by UME6. We have determined whether acetylation and deacetylation are promoter specific at PHO5, by using antibodies against acetylated lysine residues and chromatin immunoprecipitation to examine the acetylation state of a 4.25-kilobase region surrounding the PHO5 gene. Here we show that this region is acetylated extensively by ESA1 and GCN5 and deacetylated by HDA1 and RPD3, and that widespread histone modification affects three separate chromosomal regions examined, which total 22 kb. Our data indicate that targeted modification occurs in a background of global acetylation and deacetylation that not only reduces basal transcription, but also allows a rapid return to the initial state of acetylation when targeting is removed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global acetylation and deacetylation of a chromosomal region containing PHO5.
Figure 2: RPD3 is dominant to HDA1 in its repression of PHO5 .
Figure 3: HDA1 disruption slows return to repression of PHO5 from activating conditions.
Figure 4: Global deacetylation and acetylation in two regions of chromosome 10.

Similar content being viewed by others

References

  1. Georgakopoulos, T. & Thireos, G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11, 4145–4152 (1992).

    Article  CAS  Google Scholar 

  2. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 ( 1996).

    Article  CAS  Google Scholar 

  3. Drysdale, C. M. et al. The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol. Cell. Biol. 18, 1711– 1724 (1998).

    Article  CAS  Google Scholar 

  4. Kadosh, D. & Struhl, K. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18, 5121–5127 (1998).

    Article  CAS  Google Scholar 

  5. Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. & Grunstein, M. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392, 831–835 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Knoepfler, P. S. & Eisenman, R. N. Sin meets NuRD and other tails of repression. Cell 99, 447–450 (1999).

    Article  CAS  Google Scholar 

  7. Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 6317 –6327 (1991).

    Article  CAS  Google Scholar 

  8. Svaren, J. & Hörz, W. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22, 93–97 ( 1997).

    Article  CAS  Google Scholar 

  9. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988).

    Article  CAS  Google Scholar 

  10. Gregory, P. D. et al. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell 1, 495–505 (1998).

    Article  CAS  Google Scholar 

  11. Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl Acad. Sci. USA 82, 6470– 6474 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Orlando, V., Strutt, H. & Paro, R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205– 214 (1997).

    Article  CAS  Google Scholar 

  13. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  Google Scholar 

  14. Dedon, P. C., Soults, J. A., Allis, C. D. & Gorovsky, M. A. A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal. Biochem. 197, 83–90 (1991).

    Article  CAS  Google Scholar 

  15. Hecht, A., Strahl-Bolsinger, S. & Grunstein, M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383, 92–96 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 ( 1998).

    Article  CAS  Google Scholar 

  17. Rundlett, S. E. et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl Acad. Sci. USA 93, 14503–14508 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Grant, P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274, 5895– 5900 (1999).

    Article  CAS  Google Scholar 

  19. Clarke, A. S., Lowell, J. E., Jacobson, S. J. & Pillus, L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol. 19, 2515– 2526 (1999).

    Article  CAS  Google Scholar 

  20. Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    Article  CAS  Google Scholar 

  21. Reifnyder, C., Lowell, J., Clarke, A. & Pillus, L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nature Genet. 16, 109 (1997).

    CAS  PubMed  Google Scholar 

  22. Ehrenhofer-Murray, A. E., Rivier, D. H. & Rine, J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145, 923–934 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Parthun, M. R., Widom, J. & Gottschling, D. E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94 ( 1996).

    Article  CAS  Google Scholar 

  24. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  25. Han, M., Kim, U. J., Kayne, P. & Grunstein, M. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae . EMBO J. 7, 2221–2228 (1988).

    Article  CAS  Google Scholar 

  26. Schmitt, M. E., Brown, T. A. & Trumpower, B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092 (1990).

    Article  CAS  Google Scholar 

  27. Hecht, A. & Grunstein, M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol. 304, 399– 414 (1999).

    Article  CAS  Google Scholar 

  28. Almer, A., Rudolph, H., Hinnen, A. & Hörz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  Google Scholar 

  29. Laman, H., Balderes, D. & Shore, D. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae . Mol. Cell. Biol. 15, 3608– 3617 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Pillus for the esa1ts strain. We are grateful to the members of the Grunstein laboratory for critical comments and discussions throughout this work and are thankful to Y. Suka and A. Carmen for antibodies against histone sites of acetylation. M.V. acknowledges pre-doctoral support from the Dottorato di Ricerca in Genetica e Biologia Molecolare—Università degli Studi di Roma “la Sapienza”. This work was supported by a Public Health Service grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grunstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelauer, M., Wu, J., Suka, N. et al. Global histone acetylation and deacetylation in yeast. Nature 408, 495–498 (2000). https://doi.org/10.1038/35044127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing