Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data

A Corrigendum to this article was published on 08 March 2001

Abstract

Through its ability to transport large amounts of heat, fresh water and nutrients, the ocean is an essential regulator of climate1,2. The pathways and mechanisms of this transport and its stability are critical issues in understanding the present state of climate and the possibilities of future changes. Recently, global high-quality hydrographic data have been gathered in the World Ocean Circulation Experiment (WOCE), to obtain an accurate picture of the present circulation. Here we combine the new data from high-resolution trans-oceanic sections and current meters with climatological wind fields, biogeochemical balances and improved a priori error estimates in an inverse model, to improve estimates of the global circulation and heat fluxes. Our solution resolves globally vertical mixing across surfaces of equal density, with coefficients in the range (3–12) × 10-4 m2 s-1. Net deep-water production rates amount to (15 ± 12) × 106 m3 s-1 in the North Atlantic Ocean and (21 ± 6) × 106 m3 s-1 in the Southern Ocean. Our estimates provide a new reference state for future climate studies with rigorous estimates of the uncertainties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrographic sections and heat fluxes.
Figure 2: Zonally integrated layer mass transports.
Figure 3: Global meridional heat transports.

Similar content being viewed by others

References

  1. Macdonald, A. M. & Wunsch, C. An estimate of global ocean circulation and heat fluxes. Nature 382 , 436–439 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Houghton, J. T. et al. (eds) Climate Change 1995 (Cambridge Univ. Press, 1996).

    Google Scholar 

  3. Ganachaud, A. Large Scale Oceanic Circulation and Fluxes of Freshwater Heat, Nutrients and Oxygen. Thesis, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, (1999).

    Book  Google Scholar 

  4. Ganachaud, A., Wunsch, C., Marotzke, J. & Toole, J. The meridional overturning and large-scale circulation of the Indian Ocean. J. Geophys. Res. (in the press).

  5. Roemmich, D. & McCallister, T. Large scale circulation of the North Pacific Ocean. Prog. Oceanogr. 22, 171–204 (1989).

    Article  ADS  Google Scholar 

  6. Broecker, W. S., Sutherland, S. & Peng, T.-H. A possible 20th-century slowdown of Southern Ocean deep water formation. Science 286, 1132– 1135 (1999).

    Article  CAS  Google Scholar 

  7. Orsi, A. H., Johnson, G. C. & Bullister, J. L. Circulation, mixing and production of Antarctic Bottom Water. Prog. Oceanogr. 43, 55– 109 (1999).

    Article  ADS  Google Scholar 

  8. Gordon, A. L., Susanto, R. D. & Ffield, A. Throughflow within the Makassar Strait. Geophys. Res. Lett. 26, 3325–3328 (1999).

    Article  ADS  Google Scholar 

  9. Jackett, D. R. & McDougall, T. J. A neutral density variable for the world's oceans. J. Phys. Oceanogr. 27, 237–263 (1997).

    Article  ADS  Google Scholar 

  10. Munk, W. & Wunsch, C. The Moon and mixing: abyssal recipes II. Deep-Sea Res. I 45, 1977– 2010 (1998).

    Article  Google Scholar 

  11. Polzin, K. L., Toole, J. M., Ledwell, G. R. & Schmitt, R. W. Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 93–96 ( 1997).

    Article  CAS  Google Scholar 

  12. Toggweiler, J. R. & Samuels, B. On the ocean's large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr. 28, 1832–1852 (1998).

    Article  ADS  Google Scholar 

  13. da Silva, A., Young, C. & Levitus, S. Atlas of Surface Marine Data Vol. 1, Algorithms and Procedures (NOAA Atlas NESDIS 6, US Dept of Commerce, 1994).

    Google Scholar 

  14. Garnier, E., Barnier, B., Siefridt, L. & Béranger, K. Investigating the 15-year air-sea flux climatology from the ECMWF reanalysis project as a surface boundary condition for ocean models. Int. J. Climatol. (in the press).

  15. Manabe, S. & Stouffer, R. J. Two stable equilibria of a coupled ocean-atmosphere model. J. Clim. 1, 841– 866 (1988).

    Article  ADS  Google Scholar 

  16. Marotzke, J. in Decadal Climate Variability, Dynamics and Predictability (eds Anderson, D. L. T. & Willebrand, J.) Vol. I, 44 (NATO ASI/Springer, 1996).

    Google Scholar 

  17. Gleckler, P. J. & Weare, B. C. Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Clim. 10, 2764–2781 (1997).

    Article  ADS  Google Scholar 

  18. Josey, S. A., Kent, E. C. & Taylor, P. K. New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Clim. 9, 2856–2880 (1999).

    Article  ADS  Google Scholar 

  19. Keith, D. W. Meridional energy transport: uncertainty in zonal means. Tellus 47, 30–44 ( 1995).

    Article  Google Scholar 

  20. Ganachaud, A. & Wunsch, C. Oceanic nutrient and oxygen fluxes during the World Ocean Circulation Experiment and bounds on export production. Glob. Biogeochem. Cycles (submitted).

  21. Macdonald, A. The global ocean circulation: a hydrographic estimate and regional analysis. Prog. Oceanogr. 41, 281– 382 (1998).

    Article  ADS  Google Scholar 

  22. Schmitz, W. J. Jr & McCartney, M. S. On the North Atlantic circulation. Rev. Geophys. 31 , 29–49 (1993).

    Article  ADS  Google Scholar 

  23. Wunsch, C. The Ocean Circulation Inverse Problem 437 (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

  24. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–85 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Broecker, W. S. “NO”, a conservative water-mass tracer. Earth Planet. Sci. Lett. 23, 100–107 ( 1974).

    Article  ADS  CAS  Google Scholar 

  26. McDougall, T. Neutral surfaces. J. Phys. Oceanogr. 17, 1950–1964 (1987).

    Article  ADS  Google Scholar 

  27. McDougall, T. J. in Parameterization of Small-Scale Processes, Hawaiian Winter Workshop Aha Hulikoa 355–386 (Univ. Hawaii, Manoa, 1991).

    Google Scholar 

  28. Stammer, D., Tokmakian, R., Semtner, A. & Wunsch, C. How well does a 1/4° global circulation model simulate large scale oceanic observations? J. Geophys. Res. 101, 25779 –25811 (1996).

    Article  ADS  Google Scholar 

  29. Trenberth, K. E. & Solomon, A. The global heat balance; heat transports in the atmosphere and ocean. Clim. Dyn. 10, 107–134 ( 1994).

    Article  Google Scholar 

  30. de las Heras, M. & Schlitzer, R. On the importance of intermediate water flows for the global ocean overturning. J. Geophys. Res. 104, 15515–15536 (1999).

    Article  ADS  Google Scholar 

  31. Bryden, H. L., Roemmich, D. H. & Church, J. A. Ocean heat transport across 24° N in the Pacific. Deep-Sea Res. 38, 297– 324 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was completed while A.G. was a graduate student in the MIT/WHOI Joint Program in Physical Oceanography. We thank J. Toole, B. Warren, J. Marotzke, D. Glover and N. Hogg. B. Arbic, G. McKinley, A. Czaja, A. Macdonald, J. Marshall and M. Fieux also provided helpful comments on the manuscript. We are grateful to the principal investigators who provided the data from the World Ocean Circulation Experiment and the Franco-Indonesian Java-Australia Dynamic Experiment. G. Brown and D. Spiegel helped to design the figures. We were supported by the Jet Propulsion Laboratory and by gifts from Ford, General Motors and Daimler-Chrysler to MIT's Climate Modelling Initiative. This work is a contribution to the World Ocean Circulation Experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Ganachaud.

Additional information

MIT 54-1517, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganachaud, A., Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000). https://doi.org/10.1038/35044048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing