Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Three ways to make a vesicle

Key Points

  • Some steps of membrane transport require the formation of vesicles coated with COPI, COPII or clathrin. The coats probably generate the forces necessary to bend a relatively flat membrane into a vesicle.

  • COPI coats function in transport through the Golgi and in retrograde transport from the Golgi to the endoplasmic reticulum. COPII coats function in transport from the ER to the Golgi. Clathrin functions in receptor-mediated endocytosis at the plasma membrane when associated with AP2 adaptors, and in transport from the trans-Golgi network (TGN) to endosomes when associated with AP1 adaptors.

  • The assembly of COPII coats starts with the activation of the small GTPase Sar1p, followed by the sequential recruitment of Sec24p-Sec23p and then Sec13p-Sec31p. The GTPase activity of Sar1p acts as a timer for coat release.

  • Similarly, the assembly of COPI coats starts with the activation of the small GTPase Arf1, followed by the recruitment of the coatomer, which binds to the cytoplasmic domain of cargo. The GTPase activity of Arf1 acts as a timer for coat release.

  • The formation of clathrin coats is more complicated, as coat assembly, vesicle budding and uncoating are distinguishable steps regulated by different sets of proteins.

  • Adaptor proteins (AP1, AP2 and arrestins) bind to the cytoplasmic signal sequences of cargo molecules. The recruitment of adaptors is only energy dependent at the TGN, and not at the plasma membrane.

  • Many accessory proteins take part in a network of interactions that regulates clathrin-coat formation. In most cases, the precise function of these proteins is not known.

  • Vesicle scission requires GTP hydrolysis by the GTPase dynamin.

  • Vesicle uncoating requires ATP hydrolysis by auxilin-hsc70.

  • The structure of many of the components of the clathrin machinery has been solved, and many of the protein-protein interactions have been analysed at atomic resolution. However, no structural information is available for COPI and COPII coats.

Abstract

Cargo molecules have to be included in carrier vesicles of different forms and sizes to be transported between organelles. During this process, a limited set of proteins, including the coat proteins COPI, COPII and clathrin, carries out a programmed set of sequential interactions that lead to the budding of vesicles. A general model to explain the formation of coated vesicles is starting to emerge but the picture is more complex than we had imagined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major membrane traffic pathways that use carrier vesicles coated with COPI, COPII and clathrin in eukaryotic cells
Figure 2: The key steps in the formation of COPII-coated vesicles.
Figure 3: The key steps in the formation of COPI-coated vesicles.
Figure 4: The key steps in the formation of clathrin-coated vesicles.
Figure 5: Network of protein–protein and protein–lipid interactions involved in clathrin coat formation at the plasma membrane.
Figure 6: Clathrin coats, a collage of medium and high-resolution views.

Similar content being viewed by others

References

  1. Wieland, F. & Harter, C. Mechanisms of vesicle formation: insights from the COP system. Curr. Opin. Cell Biol. 11, 440–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Lewin, D. A. & Mellman, I. Sorting out adaptors. Biochem. Biophys. Acta – Mol. Cell Res. 1401, 129–145 (1998).

    Article  CAS  Google Scholar 

  3. Barlowe, C. Traffic COPs of the early secretory pathway. Traffic 1, 371–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kirchhausen, T. Adaptors for clathrin mediated traffic. Annu. Rev. Cell. Dev. Biol. 15, 705–732 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  5. Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699– 727 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227– 234 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  8. Springer, S., Spang, A. & Schekman, R. A primer on vesicle budding. Cell 97, 145–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67 , 199–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  12. Polischchuk, R. S. et al. Correlative light–electron microscopy reveals the tubular–saccular ultrastructure of carriers operating between the Golgi apparatus and plasma membrane. J. Cell Biol. 148, 45– 58 (2000).

    Article  Google Scholar 

  13. Presley, J. F. et al. Golgi membrane dynamics. Mol. Biol. Cell 9, 1617–1626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gruenberg, J. & Maxfield, F. R. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552– 563 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Volchuk, A. et al. Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell 102, 335–348 (2000).Explores the consequences of acutely changing the size of cargo on the dynamics and morphological characteristics of membrane traffic along the secretory pathway.

    Article  CAS  PubMed  Google Scholar 

  16. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).First demonstration that coat components are used to drive vesicular traffic from the endoplasmic reticulum towards the Golgi.

    Article  CAS  PubMed  Google Scholar 

  17. Barlowe, C. & Schekman, R. SEC12 encodes a guanine nucleotide exchange factor essential for transport vesicle formation from the ER. Nature 365, 347–349 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  18. Springer, S. & Schekman, R. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science 281, 698–700 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  19. Peng, R. W., De Antoni, A. & Gallwitz, D. Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J. Biol. Chem. 275, 11521–11528 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schimmoller, F. et al. The absence of Em24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 14, 1329–1339 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaiser, C. Thinking about p24 proteins and how transport vesicles select their cargo . Proc. Natl Acad. Sci. USA 97, 3783– 3785 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R. & Paccaud, J. P. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).

    CAS  PubMed  Google Scholar 

  23. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harter, C. et al. Nonclathrin coat protein γ, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc. Natl Acad. Sci. USA 93, 1902 –1906 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dominguez, M. et al. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COPI and COPII coatomer. J. Cell Biol. 140, 751–765 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Franco, M. et al. Arno3, a Sec7-domain guanine nucleotide exchange factor for Adp ribosylation factor 1, is involved in the control of Golgi structure and function. Proc. Natl Acad. Sci. USA 95, 9926–9931 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldberg, J. Structural and functional analysis of the ARF-1ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893–902 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671– 679 (2000).Kinetic model for the regulation of COPI coats that couples cargo with coat formation.

    Article  CAS  PubMed  Google Scholar 

  29. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 20, 313–331 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanaseki, T. & Kadota, K. The 'vesicle in a basket'. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pearse, B. M. F. Coated vesicles from pig brain: purification and biochemical characterization . J. Mol. Biol. 97, 93– 98 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Payne, G. S. & Schekman, R. A test of clathrin function in protein secretion and cell growth. Science 230, 1009–1014 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Seeger, M. & Payne, G. S. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast. EMBO J. 11, 2811–2818 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lemmon, S. K. & Jones, E. W. Clathrin requirement for normal growth of yeast. Science 238, 504– 509 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Tan, P. K., Davis, N. G., Sprague, G. F. & Payne, G. S. Clathrin facilitates the internalization of seven transmembrane segment receptors for mating pheromones in yeast. J. Cell Biol. 123, 1707–1716 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Kirchhausen, T. Coated pits and coated vesicles — sorting it all out. Curr. Opin. Struct. Biol. 3, 182–188 (1993).

    Article  CAS  Google Scholar 

  37. Smith, C. J. & Pearse, B. M. F. Clathrin: anatomy of a coat protein. Trends Cell Biol. 9, 335– 338 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Jarousse, N. & Kelly, R. B. Selective inhibition of adptor complex-mediated vesiculation. Traffic 1, 378–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson, S. S. G. et al. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363 –366 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Goodman, O. B. Jr et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996). First demonstration of the direct coupling between clathrin and β-arrestin: it opens up the concept that other adaptors, besides the canonical AP-1 or AP-2, can mediate sorting of membrane proteins into clathrin-coated pits.

    Article  CAS  PubMed  Google Scholar 

  41. Ter Haar, E., Harrison, S. C. & Kirchhausen, T. Peptide-in-groove interactions link target proteins to the β-propeller of clathrin. Proc. Natl Acad. Sci. USA 97, 1096–1100 ( 2000).Atomic model obtained by X-ray crystallography of complexes formed between clathrin and peptides of β-arrestin or of AP-2 adaptor that contain sequences known to be involved in the interaction with clathrin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, C. Y. & Graham, T. R. An arf1 Delta synthetic lethal screen identifies a new clathrin heavy chain conditional allele that perturbs vacuolar protein transport in Saccharomyces cerevisiae. Genetics 150, 577–589 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Seaman, M. N. J., Sowerby, P. J. & Robinson, M. S. Cytosolic and membrane-associated proteins involved in the recruitment of AP-1 adaptors onto the trans-Golgi network. J. Biol. Chem. 271, 25446–25451 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Stamnes, M. A. & Rothman, J. E. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73, 999–1005 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Zhu, Y., Traub, L. M. & Kornfeld, S. ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Mol. Biol. Cell 9, 1323–1337 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seaman, M. N. J., Ball, C. L. & Robinson, M. S. Targeting and mistargeting of plasma membrane adaptors in vitro. J. Cell Biol. 123, 1093– 1105 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Traub, L. M. et al. AP-2 containing clathrin coats assemble on mature lysosomes . J. Cell Biol. 135, 1801– 1814 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268–1271 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Yeung, B. G., Phan, H. L. & Payne, G. S. Adaptor complex-independent clathrin function in yeast. Mol. Biol. Cell 10, 3643– 3659 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 18, 3897– 3908 (1999).This unexpected observation that removal of all clathrin adaptors does not affect clathrin-mediated pathways challenges the view that this type of adaptor is a required link between the clathrin coat and the membrane components in a coated vesicle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez-Gaitan, M. & Jackle, H. Role of Drosophila α-adaptin presynaptic vesicle recycling. Cell 88, 767–776 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, J., Jongeward, G. D. & Sternberg, P. W. unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. Genes Dev. 8, 60– 73 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Shim, J. & Lee, J. Molecular genetic analysis of apm-2 and aps-2, genes encoding the medium and small chains of the AP-2 clathrin-associated protein complex in the nematode Caenorhabditis elegans . Mol. Cell 10, 309– 316 (2000).

    CAS  Google Scholar 

  54. Meyer, C. et al. μ 1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19, 2193–2203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zizioli, D. et al. Early embryonic death of mice deficient in γ-adaptin . J. Biol. Chem. 274, 5385– 5390 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003– 2015 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793– 797 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Wendland, B., Steece, K. E. & Emr, S. D. Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J. 18, 4383–4393 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haffner, C. et al. Synaptojanin 1 — localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett. 419, 175–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Benmerah, A. et al. The tyrosine kinase substrate Eps15 is constitutively associated with the plasma membrane adaptor AP-2. J. Cell Biol. 131, 1831–1838 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Dell'Angelica, E. C., Klumperman, J., Stoorvogel, W. & Bonifacino, J. S. Association of the AP-3 adaptor complex with clathrin. Science 280, 431–434 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  63. Goodman, O. B. Jr, Krupnick, J. G., Gurevich, V. V., Benovic, J. L. & Keen, J. H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J. Biol. Chem. 272 , 15017–15022 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Krupnick, J. G., Goodman, O. B. Jr, Keen, J. H. & Benovic, J. L. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J. Biol. Chem. 272, 15011–15016 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S. & Caron, M. G. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. 275, 23120– 23126 (2000).

  66. Laporte, S. A. et al. The β2-adrenergic receptor/β-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl Acad. Sci. USA 96, 3712–3717 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 ( 1995).The discovery that auxilin, a clathrin coat protein containing a J domain, is required as a cofactor for the ATP-dependent activity of Hsc70 validates the role of Hsc70 as the uncoating enzyme.

    Article  CAS  PubMed  Google Scholar 

  68. Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase . J. Cell Biol. 99, 723– 733 (1984).

    Article  CAS  PubMed  Google Scholar 

  69. Greener, T., Zhao, X. H., Nojima, H., Eisenberg, E. & Greene, L. E. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J. Biol. Chem. 275 , 1365–1370 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Umeda, A., Meyerholz, A. & Ungewickell, E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur. J. Cell Biol. 79 , 336–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 ( 1998).First in vitro demonstration that dynamin can lead to membrane vesiculation, a required step in the scission process required to transform a clathrin-coated pit into a coated vesicle.

    Article  CAS  PubMed  Google Scholar 

  72. Kirchhausen, T. Cell biology — boa constrictor or rattlesnake? Nature 398, 470–471 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, W. & Cerione, R. A. Endocytosis: is dynamin a 'blue collar' or 'white collar'? Curr. Biol. 9, R511–R514 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Schmidt, A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401 , 133–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481– 486 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Woscholski, R. et al. Synaptojanin is the major constitutively active phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase in rodent brain. J. Biol. Chem. 272, 9625–9628 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  78. Bi, K., Roth, M. G. & Ktistakis, N. T. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex . Curr. Biol. 7, 301–307 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Zimmerberg, J. Are the curves in the right places? Traffic 1, 366–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Barr, F. A. & Shorter, J. Do cones mark sites of fission? Curr. Biol. 10, R141–R144 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin — a β-propeller terminal domain joins an α-zigzag linker. Cell 95, 563– 573 (1998).First atomic structure of a portion of clathrin. The structure shows how the globular domain at the most distal end of the leg is folded (a β-propeller with seven blades) and leads to a prediction for the organization of the remaining linear portion of the leg (an α-zigzag made of alternating short helices extending along the main axis of the leg).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998). First atomic structure of a complex between a peptide containing a tyrosine-based endocytic sorting signal of the type YppØ and the μ2 subunit of the clathrin adaptor complex AP-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Traub, L. M., Downs, M. A., Wistrich, J. L. & Fremont, D. H. Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin coat assembly. Proc. Natl Acad. Sci. USA 96, 8907–8912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ybe, J. A. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371– 375 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. De Beer, T., Carter, R. E., Loel-Rice, K. E., Sorkin, A. & Overduin, M. Structure and Asn–Pro–Phe binding pocket of the Eps15 homology domain. Science 281, 1357–1360 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Whitehead, B., Tessari, M., Carotenuto, A., van Bergen en Henegouwen, P. M. & Vuister, G. W. The EH1 domain of Eps15 is structurally classified as a member of the S100 subclass of EF-hand containing proteins. Biochemistry 38, 11271 –11277 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Owen, D. J. et al. A structural explanation for the binding of multiple ligands by the α-adaptin appendage domain. Cell 97, 805–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Timm, D. et al. Crystal structure of the pleckstrin homology domain from dynamin . Nature Struct. Biol. 1, 782– 788 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Hyman, J., Chen, H., Di Fiore, P. P., De Camilli, P. & Brunger, A. T. Epsin1 undergoes nucleocytosolic shuttling and its ENTH domain, structurally similar to armadillo and HEAT repeats, interacts with the transcription factor PLZF. J. Cell Biol. 149, 537–546 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Owen, D. J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J. 17, 5273–5285 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Owen, D. J., Vallis, Y., Pearse, B. M. F., McMahon, H. T. & Evans, P. R. The structure and function of the β2-adaptin appendage domain. EMBO J. 19, 4216– 4227 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith, C. J., Grigorieff, N. & Pearse, B. M. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 ( 1998).First model obtained by electron cryomicroscopy of any vesicle coat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Musacchio, A. et al. Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. Mol. Cell 3, 761–770 (1999). Determination of the tri-dimensional model of a clathrin triskelion and the analysis of how triskelions are packaged in the coat lead to a simple proposal of how triskelions can be added (assembly) or removed (uncoating) from the coat.

    Article  CAS  PubMed  Google Scholar 

  94. Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872– 1875 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Boll, W. et al. Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes. EMBO J. 15, 5789–5795 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ohno, H. et al. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem. 273, 25915–25921 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  97. Crowther, R. A. & Pearse, B. M. Assembly and packing of clathrin into coats. J. Cell Biol. 91, 790–797 (1981).

    Article  CAS  PubMed  Google Scholar 

  98. Kirchhausen, T., Harrison, S. C. & Heuser, J. Configuration of clathrin trimers: evidence from electron microscopy. J. Ultrastruct. Mol. Struct. Res. 94, 199–208 (1986).

    Article  CAS  PubMed  Google Scholar 

  99. Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts . J. Cell Biol. 84, 560– 583 (1980).

    Article  CAS  PubMed  Google Scholar 

  100. Damer, C. K. & O' Halloran, J. Spatially regulated recruitment of clathrin to the plasma membrane during capping and cell translocation. Mol. Biol. Cell 11, 2151–2159 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 ( 1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Movie

Computer simulation of how a clathrin coat might assemble or disassemble (if run in reverse). The animation is based on geometrical constraints imposed by the three-dimensional shape of clathrin triskelions determined in solution by electron microscopy 99, the model of a clathrin coat determined by electron cryomicroscopy 93 and the fit of the atomic structure of the clathrin terminal domain solved by x-ray crystallography 82 to the model of the coat 94. Clathrin triskelions have a characteristic pinwheel appearance; each of the three legs contains a heavy chain and a light chain, spanning a total length of 500 Å. A fully assembled coat contains one triskelion centre at each vertex so that every leg spans two adjacent edges. The music is "Prelude in C minor" by Rachmaninoff. The animation will be presented in a group exhibition of the ART-SCIENCE FUSION project during the 5th International Annaberg Conference in Goldegg castle. This is a joint project with the 'Kulturverein Schloss Goldegg'. Schloss Goldegg focus its 2000/2001 projects on ‚ELEMENTAR'. The exhibition will then move to 'Monique Goldstrom Gallery', 560 Broadway, New York, USA

Related links

Related links

DATABASE LINKS

Sec23p

Sec24p

Sec13p

Sec31p

Sar1p

Sec12p

Emp24

COPI coatamer

KDEL receptor

ARF1

ARNO3

ARFGAP

LDL receptor

clathrin

AP-1

AP-2

arrestins

synaptotagmin

amphiphysin

epsin

synaptojanin

Eps15

dynamin

Hsc70

endophilin

phospholipase D

EH domain

ENTH domain

Pleckstrin homology domain

ENCYCLOPEDIA OF LIFE SCIENCES

Clathrin-coated vesicles and receptor-mediated endocytosis

Further reading

Accessory factors in clathrin-dependent synaptic vesicle endocytosis

Glossary

ENDOCYTIC PATHWAY

Macromolecules are taken up by invagination of the plasma membrane. They first arrive in early endosomes, then late endosomes, and finally lysosomes, where they are degraded by hydrolases.

SECRETORY PATHWAY

Secretory or membrane proteins are inserted into the endoplasmic reticulum. They are then transported through the Golgi to the trans-Golgi network, where they are sorted to their final destination.

FIBROBLAST

Common cell type found in connective tissue in many parts of the body, which secretes an extracellular matrix rich in collagen and other macromolecules and connects cell layers.

MACROPINOCYTOSIS

Actin-dependent process by which cells engulf large volumes of fluids.

PHAGOCYTOSIS

Actin-dependent process, by which cells engulf external particulate material by extension and fusion of pseudopods around each particle.

CAVEOLA

Flask-shaped invagination at the plasma membrane, possibly involved in the uptake of extracellular materials.

GREEN-FLUORESCENT PROTEIN

Autofluorescent protein originally identified in the jellyfish Aequorea victoria.

MYRISTOYLATION

Covalent attachment of a hydrophobic myristoyl group to the amino-terminal glycine residue of a nascent polypeptide.

J DOMAIN

Approximately 73 amino-acid region found in DnaJ-like heat shock proteins, which catalytically activates proteins of the Hsc70 family.

SH3 DOMAINS

(Src homology region 3 domains.) Protein sequences of about 50 amino acids that recognize and bind sequences rich in proline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchhausen, T. Three ways to make a vesicle. Nat Rev Mol Cell Biol 1, 187–198 (2000). https://doi.org/10.1038/35043117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35043117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing