Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean

Abstract

One possible consequence of a change in climate over the past several decades is an increase in wave heights, potentially threatening coastal areas as well as the marine industry1,2,3,4. But the difficulties in observing wave heights exacerbates a general problem of climate-change detection: inhomogeneities in long-term observational records owing to changes in the instruments or techniques used, which may cause artificial trends5,6. Ground movements with periods of 4–16 seconds, known as microseisms, are associated with ocean waves and coastal surf 7,8,9,10, and have been recorded continuously since the early days of seismology. Here we use such a 40-year record of wintertime microseisms from Hamburg, Germany, to reconstruct the wave climate in the northeast Atlantic Ocean. For the period 1954–77, we detect an average of seven days per month with strong microseismic activity, without a significant trend. This number increases significantly in the second half of the record, reaching approximately 14 days of strong microseisms per month. The implied increase in northeast Atlantic wave height over the past 20 years parallels increased surface air temperatures11 and storminess12 in this region, suggesting a common forcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between daily microseism data (periods 6–8 s) from an old Wiechert pendulum and a modern Sprengnether seismometer for January–March 1975.
Figure 2: Time series of the wintertime microseisms recorded at the station HAM (Hamburg, Germany) over the last four decades.

Similar content being viewed by others

References

  1. Carter, D. J. T. & Draper, L. Has the north-east Atlantic become rougher? Nature 332, 494 (1988).

    Article  ADS  Google Scholar 

  2. Bouws, E., Jannick, D. & Komen, G. J. On increasing wave height in the North Atlantic Ocean. Bull. Am. Meteorol. Soc. 77, 2275–2277 (1996).

    Article  ADS  Google Scholar 

  3. Bijl, W. Impact of wind climate change on the surge in the southern North Sea. Clim. Res. 8, 45–59 (1997).

    Article  Google Scholar 

  4. WASA Group. Changing waves and storms in the Northeast Atlantic? Bull. Am. Meteorol. Soc. 79, 741–760 (1998).

    Article  ADS  Google Scholar 

  5. Karl, T. R., Quayle, R. G. & Groisman, P. Y. Detecting climate variations and changes: new challenges for observing and data management systems. J. Clim. 6, 1481–1494 (1993).

    Article  ADS  Google Scholar 

  6. Jones, P. D. in Analysis of Climate Variability (eds von Storch, H. & Navarra, A.) 53–76 (Springer, Berlin, 1995).

    Book  Google Scholar 

  7. Wiechert, E. Discussion, Verhandlung der zweiten Internationalen Seismologischen Konferenz, Strasbourg. Gerlands Beitr. Geophysik 2, 41–43 (1904).

    Google Scholar 

  8. Gutenberg, B. Untersuchungen über die Bodenunruhe mit Perioden von 4–10 Sekunden in Europa. Veröff. Zentr. Bur. Int. Seismol. Assoz. 106 (1921).

  9. Gutenberg, B. Microseisms and weather forecasting. J. Meteorol. 4, 21–28 (1947).

    Article  Google Scholar 

  10. Hasselmann, K. Statistical analysis of the generation of microseisms. Rev. Geophys. 1, 177–210 (1963).

    Article  ADS  Google Scholar 

  11. Jones, P. D., New, M., Parker, D. E., Martin, S. & Rigor, I. G. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173–199 (1999).

    Article  ADS  Google Scholar 

  12. Alexandersson, H., Smith, T., Iden, K. & Tuomenvirta, H. Long-term trend variations of the storm climate over NW Europe. Glob. Atmos. Ocean Sys. 6, 97–120 (1998).

    Google Scholar 

  13. Stouffer, R. J., Manabe, S. & Vinnikov, K. Y. Model assessment of the role of natural variability in recent global warming. Nature 367, 634–636 (1994).

    Article  ADS  Google Scholar 

  14. Santer, B. D. et al. A search for human influences on the thermal structure of the atmosphere. Nature 382, 39–45 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Mann, M. E., Bradley, R. S. & Huges, M. K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Tett, S. F. B., Stott, P. A., Allen, M. R., Ingram, W. J. I. & Mitchell, J. F. B. Causes of twentieth-century temperature change near the Earth's surface. Nature 399, 569–572 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Shindell, D. T., Miller, R. L., Schmidt, G. A. & Pandolfo, L. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399, 452–455 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North Atlantic oscillation and European climate. Nature 399, 320–323 (1999).

    Article  ADS  Google Scholar 

  19. Günther, H. et al. The wave climate of the Northeast Atlantic over the period 1955–1994: the WASA wave hindcast. Glob. Atmos. Ocean Sys. 6, 121–163 (1998).

    Google Scholar 

  20. Berz, G. Global warming and the insurance industry. Interdisciplinary Sci. Rev. 18, 120–125 (1993).

    Article  Google Scholar 

  21. Berz, G. & Conrad, K. Stormy weather: the mounting wind-storm risk and consequences for the insurance industry. Eurodecision 12, 65–69 (1994).

    Google Scholar 

  22. Conrad, V. & Pollak, L. D. Methods in Climatology (Harvard Univ. Press, Cambridge, Massachusetts, 1962).

    Google Scholar 

  23. WASA Group. Comment on “Increases in Wave Heights over the North Atlantic: a review of the evidence and some implications for the naval architect” by N. Hogben. Trans. R. Inst. Naval Arch. 137, 107–110 (1994).

    Google Scholar 

  24. Essen, H.-H., Klussmann, J., Herber, R. & Grevemeyer, I. Do microseisms in Hamburg (Germany) reflect the wave climate of the North Atlantic? Germ. J. Hydrogr. 51, 33–45 (1999).

    Google Scholar 

  25. Darbyshire, J. Analysis of twenty microseism storms during the winter of 1987–1988 and comparison with wave hindcasts. Phys. Earth Planet. Int. 63, 181–195 (1990).

    Article  ADS  Google Scholar 

  26. Longuet-Higgins, M. S. & Ursell, F. Sea waves and microseisms. Nature 162, 700 (1948).

    Article  ADS  Google Scholar 

  27. Longuet-Higgins, M. S. A theory of the origin of microseisms. Phil. Trans. R. Soc. Lond. A 243, 1–35 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  28. Bromirski, P. D., Flick, R. E. & Graham, N. Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the NE Pacific. J. Geophys. Res. 104, 20753–20766 (1999).

    Article  ADS  Google Scholar 

  29. Bath, M. An Investigation of the Uppsala Microseisms (Institute of Meteorology, Royal Univ. Uppsala, Report No. 14, Uppsala, 1949).

    Google Scholar 

Download references

Acknowledgements

We thank G. Spars for assistance in analysing the historical seismological records. This work benefited from support of the Deutsche Forschungsgemeinschaft for the SFB 512 “Cyclones and the North Atlantic Climate System”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Grevemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grevemeyer, I., Herber, R. & Essen, HH. Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature 408, 349–352 (2000). https://doi.org/10.1038/35042558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042558

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing