Kondo physics in carbon nanotubes

Article metrics


The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes1 are quantum wires that have been found to act as one-dimensional quantum dots2,3, Luttinger liquids4,5, proximity-induced superconductors6,7 and ballistic8 and diffusive9 one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain10 enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots11,12,13,14,15,16,17,18. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects19,20 accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characteristics of a nanotube device with intermediate contact transmission probabilities.
Figure 2: Analysis of two high-conductance peak pairs.
Figure 3: dI/dV greyscale plot in a different V g region at T = 75 mK.
Figure 4: Effect of perpendicular magnetic field B.


  1. 1

    Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 (1999).

  2. 2

    Tans, S. et al. Individual single-walled carbon nanotubes as quantum wires. Nature 386, 474–477 ( 1997).

  3. 3

    Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 ( 1997).

  4. 4

    Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 ( 1999).

  5. 5

    Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402 , 273–276 (1999).

  6. 6

    Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 ( 1999).

  7. 7

    Morpurgo, A. F., Kong, J., Marcus, C. & Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263–265 (1999).

  8. 8

    Frank, S., Poncharal, S. P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

  9. 9

    Bachtold, A. et al. Aharonov–Bohm oscillations in carbon nanotubes. Nature 397, 673–675 ( 1999).

  10. 10

    Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

  11. 11

    Glazman, L. I. & Raikh, M. E. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452–455 ( 1988).

  12. 12

    Ng, T. K. & Lee, P. A. On-site Coulomb repulsion and resonant tunneling. Phys. Rev. Lett. 61, 1768– 1771 (1988).

  13. 13

    Meir, Y., Wingreen, N. S. & Lee, P. A. Low-temperature transport through a quantum dot: the Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993).

  14. 14

    Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 ( 1998).

  15. 15

    Goldhaber-Gordon, D. et al. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81, 5225– 5228 (1998).

  16. 16

    Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tuneable Kondo effect in quantum dots. Science 281, 540–544 ( 1998).

  17. 17

    Schmid, J., Weis, J., Eberl, K. & v. Klirtzing, K. A quantum dot in the limit of strong coupling to reservoirs. Physica B 256–258, 182–185 ( 1998).

  18. 18

    Simmel, F., Blick, R. H., Kotthaus, J. P., Wegscheider, W. & Bichler, M. Anomalous Kondo effect in a quantum dot at nonzero bias. Phys. Rev. Lett. 83, 804–807 (1999).

  19. 19

    Sasaki, S. et al. A novel Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 ( 2000).

  20. 20

    Pustilnik, M., Avishai, Y. & Kikoin, K. Quantum dots with even number of electrons: Kondo effect in a finite magnetic field. Phys. Rev. Lett. 84, 1756–1759 (2000).

  21. 21

    Nygård, J., Cobden, D. H., Bockrath, M., McEuen, P. L. & Lindelof, P. E. Electrical transport measurements on single-walled carbon nanotubes. Appl. Phys. A 69 , 297–304 (1999).

  22. 22

    Soh, H. T. et al. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627–629 ( 1999).

  23. 23

    Glazman, L. I. Single electron tunneling. J. Low Temp. Phys. 118, 247–269 (2000).

  24. 24

    Tans, S., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 ( 1998).

  25. 25

    Cobden, D. H., Bockrath, M., McEuen, P. L., Rinzler, A. G. & Smalley, R. E. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998).

  26. 26

    Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 ( 1996).

Download references


We thank A. Rinzler and R. Smalley for supplying the nanotubes, K. G. Rasmussen, M. M. Andreasen, A. E. Hansen and A. Kristensen for experimental assistance, and M. Pustilnik, N. Wingreen, L. P. Kouwenhoven, N. d'Ambrumenil, P. R. Poulsen and P. L. McEuen for helpful discussions.

Author information

Correspondence to David Henry Cobden.

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.