Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mean-field cluster model for the critical behaviour of ferromagnets

Abstract

Two separate theories are often used to characterize the paramagnetic properties of ferromagnetic materials. At temperatures T well above the Curie temperature, TC (where the transition from paramagnetic to ferromagnetic behaviour occurs), classical mean-field theory1 yields the Curie–Weiss law for the magnetic susceptibility: χ( T) 1/(T - Θ), where Θ is the Weiss constant. Close to TC, however, the standard mean-field approach breaks down so that better agreement with experimental data is provided by critical scaling theory2,3: χ(T) 1/(T - TC)γ, where γ is a scaling exponent. But there is no known model capable of predicting the measured values of γ nor its variation among different substances4. Here I use a mean-field cluster model5 based on finite-size thermostatistics6,7 to extend the range of mean-field theory, thereby eliminating the need for a separate scaling regime. The mean-field approximation is justified by using a kinetic-energy term to maintain the microcanonical ensemble8. The model reproduces the Curie–Weiss law at high temperatures, but the classical Weiss transition at TC = Θ is suppressed by finite-size effects. Instead, the fraction of clusters with a specific amount of order diverges at T C, yielding a transition that is mathematically similar to Bose–Einstein condensation. At all temperatures above TC, the model matches the measured magnetic susceptibilities of crystalline EuO, Gd, Co and Ni, thus providing a unified picture for both the critical-scaling and Curie–Weiss regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scaling plot of the magnetic susceptibilities of crystalline europium oxide23,24, gadolinium25–27, cobalt28,29 and nickel30,31.
Figure 2: Landau-like plot of the reduced grand potential per particle, Ω( L)/kBT, as a function of the scaled alignment variable L, at four different temperatures.

Similar content being viewed by others

References

  1. Weiss, P. L'hypothèse du champ moleculaire et la propriéte ferromagnetique. J. Phys. (Paris) 6, 661– 690 (1907).

    MATH  Google Scholar 

  2. Stanley, H. E. Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, New York, 1971).

    Google Scholar 

  3. Stanley, H. E. Scaling universality, and renormalization. Rev. Mod. Phys. 71, S358–S366 (1999).

    Article  CAS  Google Scholar 

  4. Collins, M. F. Magnetic Critical Scattering (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  5. Chamberlin, R. V. Mesoscopic mean-field theory for supercooled liquids and the glass transition. Phys. Rev. Lett. 82, 2520– 2523 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Hill, T. L. Thermodynamics of Small Systems Parts I and II (Dover, New York, 1994).

    Google Scholar 

  7. Hill, T. L. & Chamberlin, R. V. Extension of the thermodynamics of small systems to open metastable states: An example. Proc. Natl Acad. Sci. USA 95, 12779–12782 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Creutz, M. Deterministic Ising dynamics. Ann. Phys. 167, 62–72 (1986).

    Article  ADS  Google Scholar 

  9. Rowlinson, J. S. Legacy of van der Waals. Nature 244, 414 –417 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Onsager, L. Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Guggenheim, E. A. The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945).

    Article  ADS  CAS  Google Scholar 

  12. Wegner, F. J. Corrections to scaling laws. Phys. Rev. B 5, 4529–4536 (1972).

    Article  ADS  Google Scholar 

  13. Souletie, J. & Tholence, J. L. Critical behavior of nickel between TC and 3TC. Solid State Commun. 48, 407–410 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Smart, J. S. Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966).

    Book  Google Scholar 

  15. Huang, K. Statistical mechanics 2nd edn (Wiley, New York, 1987 ).

    MATH  Google Scholar 

  16. Chamberlin, R. V. & Holtzberg, F. Remanent magnetization of a simple ferromagnet. Phys. Rev. Lett. 67, 1606–1609 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Korenman, V. Theories of itinerant magnetism. J. Appl. Phys. 57, 3000–3005 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Mezei, F., Farago, B., Hayden, S. M. & Stirling, W. G. Breakdown of conventional dynamic scaling at the ferromagnetic Curie point in EuO. Physica B 156&157, 226– 228 (1989).

    Article  Google Scholar 

  19. Schiener, B., Böhmer, R., Loidl, A. & Chamberlin, R. V. Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 274, 752– 754 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Chamberlin, R. V. Nonresonant spectral hole burning in a spin glass. Phys. Rev. Lett. 83, 5134–5137 ( 1999).

    Article  ADS  CAS  Google Scholar 

  21. Chamberlin, R. V. Experiments and theory of the nonexponential relaxation in liquids, glasses, polymers and crystals. Phase Transitions 65, 169–209 (1998).

    Article  CAS  Google Scholar 

  22. Bally, D., Popovici, M., Totia, M., Grabcev, B. & Lungu, A. M. Small-angle critical magnetic scattering of neutrons in Co. Neutron Inelastic Scattering Vol. II, 75–82 (IAEA, Vienna, 1968).

    Google Scholar 

  23. Menyuk, N., Dwight, K. & Reed, T. B. Critical magnetic properties and exchange interactions in EuO. Phys. Rev. B 3, 1689– 1698 (1976).

    Article  ADS  Google Scholar 

  24. Huang, C. C. & Ho, J. T. Faraday rotation near the Curie point of EuO. Phys. Rev. B 12, 5255– 5260 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Arajs, S. & Colvin, R. V. Paramagnetism of polycrystalline gadolinium, terbium, and dysprosium metals. J. Appl. Phys. 32, 336S–337S (1961).

    Article  ADS  Google Scholar 

  26. Nigh, H. E., Legvold, S. & Spedding, F. H. Magnetization and electrical resistivity of gadolinium single crystals. Phys. Rev. 132, 1092– 1097 (1963).

    Article  ADS  CAS  Google Scholar 

  27. Geldart, D. J. W., Hargraves, P., Fujiki, N. M. & Dunlap, R. A. Anisotropy of the critical magnetic susceptibility of gadolinium. Phys. Rev. Lett. 62, 2728–2731 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Nakagawa, Y. Change of magnetic susceptibility of transition metals and alloys at their melting points. J. Phys. Soc. Jpn. 11, 855 –863 (1956).

    Article  ADS  CAS  Google Scholar 

  29. Colvin, R. V. & Arajs, S. Magnetic susceptibility of face-centred cubic cobalt just above the ferromagnetic Curie temperature. J. Phys. Chem. Solids 26, 435–437 (1965).

    Article  ADS  CAS  Google Scholar 

  30. Fallot, M. Paramagnétisme des èléments ferromagnétiques. J. Phys. (Paris) 8, 153– 163 (1944).

    Google Scholar 

  31. Arajs, S. Paramagnetic behavior of nickel just above the ferromagnetic Curie temperature. J. Appl. Phys. 36, 1136– 1137 (1965).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank K. E. Schmidt and G. H. Wolf for several insights into the subject reported here. I also thank B. Geil, T. L. Hill, S. M. Lindsay and R. Richert for discussions. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph V. Chamberlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlin, R. Mean-field cluster model for the critical behaviour of ferromagnets. Nature 408, 337–339 (2000). https://doi.org/10.1038/35042534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042534

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing