Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origins of bioinformatics


Bioinformatics is often described as being in its infancy, but computers emerged as important tools in molecular biology during the early 1960s. A decade before DNA sequencing became feasible, computational biologists focused on the rapidly accumulating data from protein biochemistry. Without the benefits of supercomputers or computer networks, these scientists laid important conceptual and technical foundations for bioinformatics today.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frederick Sanger at the Nobel prize ceremony in 1980.
Figure 2: Alternative theories of protein structure.
Figure 3: Max Perutz, who shared the 1962 Nobel prize in chemistry with John Kendrew.
Figure 4: The IBM 7090 computer, which Margaret Dayhoff used for her early work.


  1. Lake, J. A. & Moore, J. E. Phylogenetic analysis and comparative genomics. Trends Guide Bioinformatics 22– 23 (1998).

  2. Howard, K. The bioinformatics gold rush. Sci. Am. 283, 58–63 (2000).

    Article  CAS  Google Scholar 

  3. Rashidi, H. H. & Buehler, L. K. Bioinformatics Basics: Applications in Biological Science and Medicine (CRC Press, Boca Raton, 2000).

    Google Scholar 

  4. Boguski, M. S. Bioinformatics — a new era. Trends Guide Bioinformatics 1–3 (1998).

  5. Kay, L. Who wrote the book of life? Information and the transformation of molecular biology, 1945–1955. Science Cont. 8, 609– 634 (1995).

    CAS  Google Scholar 

  6. Kay, L. Cybernetics, information, life: The emergence of scriptural representations of heredity . Configurations 5, 23– 91 (1997).

    Article  CAS  Google Scholar 

  7. Sarkar, S. in The Philosophy and History of Molecular Biology: New Perspectives (ed. Sarkar, S.) 187–231 (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  8. Smith, E. L. in The Origins of Modern Biochemistry: A Retrospective on Proteins (eds Srinivasan, P. R., Fruton, J. S. & Edsall, J. T.) 107– 118 (New York Academy of Sciences, New York, 1979).

    Google Scholar 

  9. Fruton, J. S. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology (Yale Univ. Press, New Haven, 1999).

    Google Scholar 

  10. Sanger, F. Chemistry of insulin. Science 129, 1340– 1344 (1959).

    Article  CAS  Google Scholar 

  11. Zamecnik, N. H. in The Origins of Modern Biochemistry: A Retrospective on Proteins (eds Srinivasan, P. R., Fruton, J. S. & Edsall, J. T.) 269– 294 (New York Academy of Sciences, New York, 1979).

    Google Scholar 

  12. Fruton, J. S. A Skeptical Biochemist (Harvard Univ. Press, Cambridge, Massachusetts, 1992).

    Google Scholar 

  13. Stein, W. H. & Moore, S. The chemical structure of proteins . Sci. Am. 204, 81–92 (1961).

    Article  Google Scholar 

  14. Moore, S. & Stein, W. H. Chemical structures of pancreatic ribonuclease and deoxyribonuclease. Science 180, 458–464 (1973).

    Article  CAS  Google Scholar 

  15. Edman, P. & Begg, G. A protein sequenator. Eur. J. Biochem. 1, 80–91 ( 1967).

    Article  CAS  Google Scholar 

  16. Sanger, F. Sequences, sequences, and sequences. Annu. Rev. Biochem. 57, 1–28 (1988).

    Article  CAS  Google Scholar 

  17. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 161, 223–230 (1973).

    Article  Google Scholar 

  18. Olby, R. C. The 'Mad Pursuit': X-Ray crystallographers' search for the structure of hemoglobin . Hist. Phil. Life Sci. 7, 171– 193 (1985).

    CAS  Google Scholar 

  19. Kay, L. The Molecular Vision of Life (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  20. Srinivasan, P. R., Fruton, J. S. & Edsall, J. T. (eds) The Origins of Modern Biochemistry: A Retrospective on Proteins (New York Academy of Sciences, New York, 1979).

    Google Scholar 

  21. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).

    Article  CAS  Google Scholar 

  22. Zuckerkandl, E. On the molecular evolutionary clock. J. Mol. Evol. 26, 34–64 (1987).

    Article  CAS  Google Scholar 

  23. Dietrich, M. Paradox and persuasion. Negotiating the place of molecular evolution within evolutionary biology. J. Hist. Biol. 31, 85–111 (1998).

    Article  CAS  Google Scholar 

  24. Hagen, J. B. Naturalists, molecular biologists, and the challenges of molecular evolution . J. Hist. Biol. 32, 321– 341 (1999).

    Article  CAS  Google Scholar 

  25. Jungck, J. R. & Friedman, R. M. Mathematical tools for molecular genetics data: An annotated bibliography. Bull. Math. Biol. 46, 699–744 (1984).

    Article  CAS  Google Scholar 

  26. Hagen, J. B. The introduction of computers into systematic research in the United States during the 1960s. Studies Hist. Phil. Biol. Biomed. Sci. (in the press).

  27. Perutz, M. Early days of protein crystallography. Meth. Enzymol. 114, 3–18 (1985).

    Article  CAS  Google Scholar 

  28. Anonymous. Computing in the university. Datamation 8, 27–30 ( 1962).

  29. Ledley, R. S. Digital electronic computers in biomedical sciences. Science 130, 1225–1234 (1959).

    Article  CAS  Google Scholar 

  30. Ledley, R. S. Use of Computers in Biology and Medicine (McGraw–Hill, New York, 1965).

    Google Scholar 

  31. Hunt, L. T. Margaret O. Dayhoff, 1925–1983. DNA 2, 87–98 ( 1983).

    Google Scholar 

  32. Hunt, L. T. Margaret Oakley Dayhoff, 1925–1983. Bull. Math. Biol. 46, 467–472 (1984).

    Article  Google Scholar 

  33. Dayhoff, M. O. & Ledley, R. S. Comprotein: A computer program to aid primary protein structure determination. Proc. Fall Joint Comp. Conf. 22, 262– 274 (1962).

    Google Scholar 

  34. Dayhoff, M. O. Computer aids to protein sequence determination. J. Theor. Biol. 8, 97–112 ( 1965).

    Article  CAS  Google Scholar 

  35. Thompson, E. O. The insulin molecule. Sci. Am. 192, 36– 41 (1955).

    Article  Google Scholar 

  36. Bernhard, S. A., Bradley, D. F. & Duda, W. L. Automatic determination of amino acid sequences. IBM J. Res. Dev. 7, 246–251 (1963).

    Article  CAS  Google Scholar 

  37. Spackman, D. D., Stein, W. H. & Moore, S. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem. 30, 1190– 1206 (1958).

    Article  CAS  Google Scholar 

  38. Mason. E. E. & Bulgren, W. G. Computer Applications in Medicine (Charles C. Thomas, Springfield, Illinois, 1964).

    Book  Google Scholar 

  39. Fitch, W. M. Book review of M. O. Dayhoff, Atlas of Protein Sequence and Structure. Syst. Zool. 22, 196 (1972).

    Article  Google Scholar 

  40. Doolittle, R. F. Some reflections on the early days of sequence searching. J. Mol. Med. 75, 239–241 ( 1997).

    CAS  PubMed  Google Scholar 

  41. Doolittle, R. F. & Blombäck, B. Amino-acid sequence investigations of fibrinopeptides from various mammals: Evolutionary implications. Nature 202,147– 152 (1964).

    Article  CAS  Google Scholar 

  42. Fitch, W. M. & Margoliash, E. Construction of phylogenetic trees. Science 155, 279– 284 (1967).

    Article  CAS  Google Scholar 

  43. Eck, R. V. & Dayhoff, M. O. Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Silver Spring, Maryland, 1966).

    Google Scholar 

  44. Dayhoff, M. O. Computer analysis of protein evolution. Sci. Am. 221 , 87–95 (1969).

    Article  Google Scholar 

  45. Fitch, W. M. An improved method of testing for evolutionary homology. J. Mol. Biol. 16, 9–16 ( 1966).

    Article  CAS  Google Scholar 

  46. Dayhoff, M. O. & Eck, R. Atlas of Protein Sequence and Structure 1967–1968 (National Biomedical Research Foundation, Silver Spring, Maryland, 1968).

    Google Scholar 

  47. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443– 453 (1970).

    Article  CAS  Google Scholar 

  48. Levinthal, C. Molecular model-building by computer. Sci. Am. 214, 42–52 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Related links

Related links






Protein Information Resource

cytochrome c


IBM history

National Biomedical Research Foundation

History of visualization of biological macromolecules


DNA sequencing

Sanger, Frederick

Protein secondary structures: predictions

Molecular clocks

Linus Carl Pauling



A chemical analysis technique that uses a process of separating gases, liquids or solids from mixtures or solutions by selective adsorption.


Proteins whose function is to carry electrons or protons (hydrogen ions) by virtue of the reversible charging/discharging of an iron atom or iron/sulphur atoms in the centre of the protein. Cytochromes are central molecules of electron transport in the process known as oxidative phosphorylation. Cytochromes are divided into four groups (a, b, c, d) according to their ability to absorb or transmit certain colours of light.


Protein present in red blood cells that reversibly binds oxygen for transport to tissues.


A protein hormone secreted by β cells of the pancreas. Insulin is important in the regulation of glucose metabolism, generally promoting the cellular use of glucose. It is also an important regulator of protein and lipid metabolism. Insulin is used as a drug to control insulin-dependent diabetes mellitus.


The hypothesis that, in any given gene or DNA sequence, mutations accumulate at an approximately constant rate in all evolutionary lineages as long as the gene or the DNA sequence retains its original function.


An oxygen-carrying muscle protein that makes oxygen available to the muscles for contraction.


A enzyme that hydrolyses RNA.


Study of the molecular structure of crystalline compounds through X-ray diffraction techniques. When an X-ray beam bombards a crystal, the atomic structure of the crystal causes the beam to scatter (diffract) in a specific pattern. X-ray crystallography provides information on the positions of individual atoms in the crystal, the distances between atoms, the angles of the atomic bonds and other features of molecular geometry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hagen, J. The origins of bioinformatics. Nat Rev Genet 1, 231–236 (2000).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing