Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian cloning: advances and limitations

Abstract

For many years, researchers cloning mammals experienced little success, but recent advances have led to the successful cloning of several mammalian species. However, cloning by the transfer of nuclei from adult cells is still a hit-and-miss procedure, and it is not clear what technical and biological factors underlie this. Our understanding of the molecular basis of reprogramming remains extremely limited and affects experimental approaches towards increasing the success rate of cloning. Given the future practical benefits that cloning can offer, the time has come to address what should be done to resolve this problem.

Key Points

  • Several mammalian species have been cloned by transferring nuclei from various adult somatic cells into enucleated oocytes.

  • The cloning procedure is still inefficient, and only one in a hundred of manipulated oocytes develop to adulthood.

  • Reasons for the low efficiency of cloning are largely unknown and are probably both technical and biological.

  • The incomplete or incorrect reprogramming of the donor nuclear genome — its inability to completely adapt and function in the new environment — is the most significant factor contributing to low cloning efficiency.

  • The cloning of large farm animals from genetically manipulated donor nuclei will have significant practical benefits.

  • The cloning of humans is prohibited because of safety reasons at present. However, therapeutic cloning and the production of individualized human embryonic stem cells for use in cell- and tissue-replacement therapies may have great importance in human medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current nuclear-transfer procedures.
Figure 2: Serial nuclear transfer34.
Figure 3: The first mouse cloned from an adult somatic (cumulus) cell.
Figure 4: The behaviour of a nuclear donor following its transfer into an enucleated oocyte.

Similar content being viewed by others

References

  1. Colman, A. Somatic cell nuclear transfer in mammals: Progress and applications. Cloning 1, 185–200 ( 1999).

    Article  Google Scholar 

  2. Di Berardino, M. A. Genomic potential of differentiated cells (Columbia Univ. Press, New York, 1997).

  3. Kolata, G. B. Clone: The road to Dolly, and the path ahead (William Morrow & Co., New York, 1998).

  4. McLaren, A. Cloning: Pathways to a pluripotent future. Science 288, 1775–1780 (2000).

    Article  CAS  Google Scholar 

  5. Sun, F. Z. & Moor, R. M. Nuclear transplantation in mammalian eggs and embryos. Curr. Top. Dev. Biol. 30, 147–176 (1995).

    Article  CAS  Google Scholar 

  6. Wilmut, I., Campbell, K. & Tudge, C. The second creation (Headline Book Publishing, London, 2000).A personal and historical recollection of the events that led to the first cloning of mammals from adult cells.

    Google Scholar 

  7. Bromhall, J. D. Nuclear transplantation in the rabbit egg. Nature 258 , 719–722 (1975).

    Article  CAS  Google Scholar 

  8. Watkins, J. F. Cell fusion in the study of tumor cells. Int. Rev. Exp. Pathol. 10, 115–141 ( 1971).

    CAS  PubMed  Google Scholar 

  9. Graham, C. F. in Heterospecific Genome Interaction. The Wistar Institute Symposium (ed. Defendi, V.) 19–35 (The Wistar Institute Press, Philadelphia, 1969).

    Google Scholar 

  10. Rorvik, D. In his image: The cloning of a man (Lippincott, Philadelphia, 1978).

    Google Scholar 

  11. Modlinksi, J. A. Transfer of embryonic nuclei to fertilised mouse eggs and development of tetraploid blastocysts. Nature 273, 466– 467 (1978).

    Article  Google Scholar 

  12. Modlinski, J. A., The fate of inner cell mass and trophectoderm nuclei transplanted to fertilized mouse eggs. Nature 292, 342– 343 (1981).

    Article  CAS  Google Scholar 

  13. Illmensee, K. & Hoppe, P. C. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantion embryos . Cell 23, 9–18 (1981).

    Article  CAS  Google Scholar 

  14. Tsunoda, Y. & Kato, Y. Not only inner cell mass cell nuclei but also trophectoderm nuclei of mouse blastocysts have a developmental totipotency . J. Reprod. Fertil. 113, 181– 184 (1998).

    Article  CAS  Google Scholar 

  15. Wakayama, T., Tateno, H., Mombaerts, P. & Yanagimachi, R. Nuclear transfer into mouse zygotes. Nature Genet. 24, 108–109 (2000).

    Article  CAS  Google Scholar 

  16. Zhou, Q., Boulanger, L. & Renard, J.-P. A simplified method for the reconstruction of fully competent mouse zygotes from adult somatic nuclei. Cloning 2, 35–44 (2000).

    Article  CAS  Google Scholar 

  17. McGrath, J. & Solter, D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220 , 1300–1302 (1983). The first description of a workable nuclear-transfer technique in mammals.

    Article  CAS  Google Scholar 

  18. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  Google Scholar 

  19. Barton, S. C., Surani, M. A. H. & Norris, M. L. Role of paternal and maternal genomes in mouse development . Nature 311, 374–376 (1984).References 18 and 19 established the principle of genomic imprinting.

    Article  CAS  Google Scholar 

  20. McGrath, J. & Solter, D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226, 1317–1319 ( 1984).

    Article  CAS  Google Scholar 

  21. Willadsen, S. M. Nuclear transplantation in sheep embryos. Nature 320 , 63–65 (1986). The first report of mammalian cloning using embryonic cells as nuclear donors.

    Article  CAS  Google Scholar 

  22. Prather, R. S. et al. Nuclear transplantation in the bovine embryo: Assessment of donor nuclei and recipient oocyte. Biol. Reprod. 37 , 859–66 (1987).

    Article  CAS  Google Scholar 

  23. Collas, P. & Barnes, F. L. Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Mol. Reprod. Dev. 38, 264–267 ( 1994).

    Article  CAS  Google Scholar 

  24. Collas, P., Balise, J. J. & Robl, J. M. Influence of cell cycle stage of the donor nucleus on development of nuclear transplant rabbit embryos. Biol. Reprod. 46, 492–500 ( 1992).

    Article  CAS  Google Scholar 

  25. Campbell, K. H. S., Ritchie, W. A. & Wilmut, I. Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol. Reprod. 49, 933–942 (1993).

    Article  CAS  Google Scholar 

  26. Robl, J. M., Gilligan, B., Critser, E. S. & First, N. L. Nuclear transplantation in mouse embryos: Assessment of recipient cell stage . Biol. Reprod. 34, 733– 739 (1986).

    Article  CAS  Google Scholar 

  27. Howlett, S. K., Barton, S. C. & Surani, M. A. Nuclear cytoplasmic interactions following nuclear transplantation in mouse embryos. Development 101, 915–923 (1987).

    CAS  PubMed  Google Scholar 

  28. Tsunoda, Y. et al. Full-term development of mouse blastomere nuclei transplanted into enucleated two-cell embryos. J. Exp. Zool. 242 , 147–151 (1987).

    Article  CAS  Google Scholar 

  29. Kono, T., Tsunoda, Y. & Nakahara, T. Production of identical twin and triplet mice by nuclear transplantation. J. Exp. Zool. 257, 214– 219 (1991).

    Article  CAS  Google Scholar 

  30. Smith, L. C., Wilmut, I. & Hunter, R. H. F. Influence of cell cycle stage at nuclear transplantation on the development in vitro of mouse embryos. J. Reprod. Fertil. 84, 619–24 ( 1988).

    Article  CAS  Google Scholar 

  31. Cheong, H.-T., Takahashi, Y. & Kanagawa, H. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48, 958–963 (1993).

    Article  CAS  Google Scholar 

  32. Otaegui, P. J., O'Neill, G. T., Campbell, K. H. S. & Wilmut, I. Transfer of nuclei from 8-cell stage mouse embryos following use of nocodazole to control the cell cycle. Mol. Reprod. Dev. 39, 147–152 (1994).

    Article  CAS  Google Scholar 

  33. Cheong, H.-T., Takahashi, Y. & Kanagawa, H. Relationship between nuclear remodeling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes. Mol. Reprod. Dev. 37, 138–145 (1994).

    Article  CAS  Google Scholar 

  34. Kwon, O. Y. & Kono, T. Production of identical sextuplet mice by transferring metaphase nuclei from four-cell embryos. Proc. Natl Acad. Sci. USA 93, 13010–13013 (1996).

    Article  CAS  Google Scholar 

  35. Sims, M. & First, N. L. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl Acad. Sci. USA 91, 6143–6147 ( 1994).

    Article  CAS  Google Scholar 

  36. Campbell, K. H. S., McWhir, J., Ritchle, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 ( 1996).References 35 and 36 established that nuclei from cultured cells could be used for cloning. Reference 36 demonstrated for the first time that nuclei from differentiated cells can support development to adults.

    Article  CAS  Google Scholar 

  37. Solter, D. Lambing by nuclear transfer. Nature 380, 24–25 (1996).

    Article  CAS  Google Scholar 

  38. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. S. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997). The first report of a mammal cloned from an adult cell nucleus.

    Article  CAS  Google Scholar 

  39. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 ( 1998).

    Article  CAS  Google Scholar 

  40. Kato, Y. et al. Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098 ( 1998).

    Article  CAS  Google Scholar 

  41. Solter, D. Dolly is a clone and no longer alone. Nature 394, 315–316 (1998).

    Article  CAS  Google Scholar 

  42. Ogura, A. et al. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol. Reprod. 62, 1579–1584 (2000).

    Article  CAS  Google Scholar 

  43. Wakayama, T., Rodriguez, I., Perry, A. C. F., Yanagimachi, R. & Mombaerts, P. Mice cloned from embryonic stem cells. Proc. Natl Acad. Sci. USA 96, 14984 –14989 (1999).

    Article  CAS  Google Scholar 

  44. Brind, S., Swann, K. & Carroll, J. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca2+ or egg activation. Dev. Biol. 223, 251–265 ( 2000).

    Article  CAS  Google Scholar 

  45. Jellerette, T., He, C. L., Wu, H., Parys, J. B. & Fissore, R. A. Downregulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation . Dev. Biol. 223, 238–250 (2000).

    Article  CAS  Google Scholar 

  46. Deguchi, R., Shirakawa, H., Oda, S., Mohri, T. & Miyazaki, S. Spatiotemporal analysis of Ca2+ waves in relation to the sperm entry site and animal–vegetal axis during Ca2+ oscillations in fertilized mouse eggs. Dev. Biol. 218, 299–313 (2000).

    Article  CAS  Google Scholar 

  47. Kuo, R. C. et al. NO is necessary and sufficient for egg activation at fertilization . Nature 406, 633–636 (2000).

    Article  CAS  Google Scholar 

  48. Onishi, A. et al. Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190 ( 2000).

    Article  CAS  Google Scholar 

  49. Polejaeva, I. A. et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90 (2000).

    Article  CAS  Google Scholar 

  50. Surani, M. A. Imprinting and the initiation of gene silencing in the germ line. Cell 93, 309–312 ( 1998).

    Article  CAS  Google Scholar 

  51. Tilghman, S. M. The sins of the fathers and mothers: genomic imprinting in mammalian development . Cell 96, 185–193 (1999).

    Article  CAS  Google Scholar 

  52. Latham, K. E. Mechanisms and control of embryonic genome activation in mammalian embryos . Int. Rev. Cytol. 193, 71– 124 (1999).

    Article  CAS  Google Scholar 

  53. Schultz, R. M. The regulation and reprogramming of gene expression in the preimplantation embryo. Adv. Dev. Biochem. 5, 129– 164 (1999).

    Article  CAS  Google Scholar 

  54. Kikyo, N., Wade, P. A., Guschin, D., Ge, H. & Wolffe, A. P. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 2360–2362 (2000).

    Article  CAS  Google Scholar 

  55. Rothstein, J. L. et al. Construction of primary and subtracted cDNA libraries from early embryos. Meth. Enzymol. 225, 587– 610 (1993).

    Article  CAS  Google Scholar 

  56. Renard, J.-P. et al. Lymphoid hypoplasia and somatic cloning. Lancet 353, 1489–1491 ( 1999).

    Article  CAS  Google Scholar 

  57. Solter, D. Cloning and embryonic stem cells: a new era in human biology and medicine . Croatian Med. J. 40, 309– 318 (1999).

    CAS  Google Scholar 

  58. Lanza, R. P. et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288, 665–669 (2000).

    Article  CAS  Google Scholar 

  59. Shiels, P. G. et al. Analysis of telomere lengths in cloned sheep. Nature 399, 316–317 ( 1999).

    Article  CAS  Google Scholar 

  60. Wakayama, T. et al. Cloning of mice to six generations. Nature 407, 318–319 (2000).

    Article  CAS  Google Scholar 

  61. Steinborn, R. et al. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nature Genet. 25, 255–257 (2000).

    Article  CAS  Google Scholar 

  62. Evans, M. J. et al. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nature Genet. 23, 90– 93 (1999).

    Article  CAS  Google Scholar 

  63. Tamashiro, K. L. K., Wakayama, T., Blanchard, R. J., Blanchard, D. C. & Yanagimachi, R. Postnatal growth and behavioral development of mice cloned from adult cumulus cells . Biol. Reprod. 63, 328– 334 (2000).

    Article  CAS  Google Scholar 

  64. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 ( 1998).

    Article  CAS  Google Scholar 

  65. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  Google Scholar 

  66. Solter, D. & Gearhart, J. Putting stem cells to work. Science 283, 1468–1470 ( 1999). References 64, 65 and 66 describe the isolation of human embryonic stem cells, the isolation of human ebryonic germ cells and their possible therapeutic uses, respectively.

    Article  CAS  Google Scholar 

  67. Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult somatic cell nuclei. Curr. Biol. 10, 989–992 (2000).

    Article  CAS  Google Scholar 

  68. McCreath, K. J. et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066 –1069 (2000).First report of cloning using cultured cell nuclei into which a foreign gene had been inserted at a predetermined chromosomal location. Proved that cloning technology could be used to produce large farm animals to serve as bioreactors.

    Article  CAS  Google Scholar 

  69. Cibelli, J. B. et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256– 1258 (1998).

    Article  CAS  Google Scholar 

  70. Schnieke, A. E. et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133 (1997).

    Article  CAS  Google Scholar 

  71. Kubota, C. et al. Six cloned calves produced from adult fibroblast cells after long-term culture. Proc. Natl Acad. Sci. USA 97, 990–995 (2000).

    Article  CAS  Google Scholar 

  72. Aldhous, P. Cloning's owners go to war. Nature 405, 610–612 (2000).

    Article  CAS  Google Scholar 

  73. Ogura, A., Inoue, K., Takano, K., Wakayama, T. & Yanagimachi, R. Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol. Reprod. Dev. 57, 55–59 (2000).

    Article  CAS  Google Scholar 

  74. Wakayama, T., Zuccotti, M., Johnson, K. R., Perry, A. C. F. & Yanagimachi, R. Full term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 ( 1998).

    Article  CAS  Google Scholar 

  75. Wakayama, T. & Yanagimachi, R. Cloning of male mice from adult tail-tip cells. Nature Genet. 22, 127– 128 (1999).

    Article  CAS  Google Scholar 

  76. Rideout, W. M. et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nature Genet. 24, 109– 110 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Ryuzo Yanagimachi from the University of Hawaii for kindly giving permission to reproduce Figures 3 and 4.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Inositol-1,4,5-trisphosphate receptor

FURTHER INFORMATION

In his Image: The Cloning of a Man

Roslin institute

European ban on human cloning

United States National Bioethics Advisory Commission's recommendations

ENCYCLOPEDIA OF LIFE SCIENCES

Nuclear transfer from established cell lines

Imprinting in mammals

Cleavage and gastrulation in mouse embryos

Sperm-egg binding in mammals

Glossary

CLONING EFFICIENCY

Cloning efficiency is calculated from the percentage of manipulated embryos that develops to adulthood, and reflects how successful or not a cloning experiment has been.

THERAPEUTIC CLONING

The use of nuclear transfer to produce individually tailored human embryonic stem cells for tissue- and cell-replacement therapies.

KARYOPLAST

An isolated donor nucleus, together with its envelope of cytoplasm and plasma membrane.

CYTOPLAST

Enucleated oocyte or embryo (zygote) that is used as a nuclear recipient.

POLAR BODY

The structure that is extruded from the oocyte during meiosis, which contains one haploid set of chromosomes.

BIOREACTORS

Animals that are genetically engineered to produce proteins or macromolecules that are of use in human medicine.

CYTOKINESIS

The division of the cytoplasm of a parent cell into daughter cells after nuclear division.

OOCYTE ACTIVATION

This occurs when the binding of sperm to the egg cell membrane triggers a series of responses in the oocyte that prepare the oocyte for fertilization and block the entry of more sperm.

CALCIUM TRANSIENTS

A series of repetitive oscillations in calcium concentration that move across the egg cytoplasm following sperm entry, which are essential for egg activation.

MITOCHONDRIAL HETEROPLASMY

The presence of more than one type of mitochondrial DNA within the same cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solter, D. Mammalian cloning: advances and limitations. Nat Rev Genet 1, 199–207 (2000). https://doi.org/10.1038/35042066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing