Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

Abstract

Carbon uptake by forestation is one method proposed1 to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change2. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular, the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying3,4,5,6,7,8,9, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials10,11,12. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather than mitigating it as intended.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effects of forestation on the solar radiation budget.
Figure 2: Effects of albedo change on annual-mean global radiative forcing in terms of carbon stock change.

References

  1. UNFCCC Kyoto Protocol to the United Nations Framework Convention on Climate Change Art. 3.3 (UNEP/INC/98/2, Information Unit for Conventions, UNEP, Geneva, 1998) <http://www.unfccc.int/resource/docs/convkp/kpeng.pdf>.

  2. UNFCCC United Nations Framework Convention on Climate Change Art. 2 (UNEP/IUC/99/2, Information Unit for Conventions, UNEP, Geneva, 1999); <http://www.unfccc.int/resource/convkp.html>.

    Google Scholar 

  3. Robinson, D. A. & Kukla, G. Albedo of a dissipating snow cover. J. Climatol. Appl. Meteorol. 23, 1626–1634 (1984).

    ADS  Article  Google Scholar 

  4. Harding, R. J. & Pomeroy, J. W. The energy balance of the winter boreal landscape. J. Clim. 9, 2778– 2787 (1996).

    ADS  Article  Google Scholar 

  5. Sharratt, B. S. Radiative exchange, near-surface temperature and soil water of forest and cropland in interior Alaska. Agric. Forest Meteorol. 89, 269–280 (1998).

    ADS  Article  Google Scholar 

  6. Thomas, G. & Rowntree, P. R. The boreal forests and climate. Q. J. R. Meteorol. Soc. 118, 469– 497 (1992).

    ADS  Article  Google Scholar 

  7. Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).

    ADS  Article  Google Scholar 

  8. Bonan, G. B., Chapin, F. S. & Thompson, S. L. Boreal forest and tundra ecosystems as components of the climate system. Clim. Change 29, 145–167 (1995).

    ADS  Article  Google Scholar 

  9. Douville, H. & Royer, J. F. Influence of the temperate and boreal forests on the Northern Hemisphere climate in the Météo-France climate model. Clim. Dyn. 13, 57– 74 (1997).

    Article  Google Scholar 

  10. Nabuurs, G. J. & Mohren, G. M. J. Modelling analysis of potential carbon sequestration in selected forest types. Can. J. Forest Res. 25, 1157–1172 (1995).

    CAS  Article  Google Scholar 

  11. Nilsson, S. & Schopfhauser, W. The carbon sequestration potential of a global reforestation program. Clim. Change 30, 267–293 (1995).

    ADS  CAS  Article  Google Scholar 

  12. Watson, R. T. et al. (eds) Land Use, Land-use Change and Forestry (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  13. Schimel, D. et al. in Climate Change 1995. The Science of Climate Change Ch. 2 (eds Houghton, J. T. et al.) 65–131 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  14. Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122, 689– 720 (1996).

    ADS  Article  Google Scholar 

  15. Pope, V. D., Gallani, M. L., Rowntree, P. R. & Stratton, R. A. The impact of new physical parametrizations in the Hadley Centre climate model - HadAM3. Clim. Dyn. 16, 123– 146 (2000).

    Article  Google Scholar 

  16. Hansen, J. E. et al. Efficient three dimensional global models for climate studies, Models I and II. Mon. Weath. Rev. 111, 609 –662 (1983).

    ADS  Article  Google Scholar 

  17. Wilson, M. F. & Henderson-Sellers, A. A global archive of land cover and soils data for use in general circulation climate models. J. Climatol. 5, 119–143 (1985).

    Article  Google Scholar 

  18. Woodward, F. I., Smith, T. M. & Emanuel, W. R. A global land primary productivity and phytogeography model. Glob. Biogeochem. Cycles 9, 471– 490 (1995).

    ADS  CAS  Article  Google Scholar 

  19. Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

    ADS  CAS  Article  Google Scholar 

  20. Keeling, C. D. & Whorf, T. P. Atmospheric CO 2 Concentrations - Mauna Loa Observatory, Hawaii, 1958-1997 (NDP-001, Carbon Dioxide Information Analysis Centre, Oak Ridge, Tennessee, 1998).

    Google Scholar 

  21. Willmott, C. J., Rowe, C. M. & Mintz, Y. Climatology of the terrestrial seasonal water cycle. J. Climatol. 5, 589–606 (1985).

    Article  Google Scholar 

  22. Cao, M. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998).

    ADS  CAS  Article  Google Scholar 

  23. Essery, R. Seasonal snow cover and climate change in the Hadley Centre GCM. Ann. Glaciol. 25, 362–366 (1997).

    ADS  Article  Google Scholar 

  24. Betts, R. A., Cox, P. M., Lee, S. E. & Woodward, F. I. Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387, 796–799 (1997).

    ADS  CAS  Article  Google Scholar 

  25. Levis, S., Foley, J. A. & Pollard, D. Potential high-latitude vegetation feedbacks on CO 2-induced climate change. Geophys. Res. Lett. 26, 747–750 (1999).

    ADS  CAS  Article  Google Scholar 

  26. Kondratyev, K. Y., Korzov, V. I., Mukhenberg, V. V. & Dyachenko, L. N. in Land Surface Processes in Atmospheric General Circulation Models (ed. Eagleson, P. S.) 463–514 (Cambridge Univ. Press, Cambridge, 1982).

    Google Scholar 

  27. Gedney, N. & Valdes, P. J. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys. Res. Lett. 27, 3053–3056 ( 2000).

    ADS  Article  Google Scholar 

  28. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 ( 2000).

    ADS  CAS  Article  Google Scholar 

  29. Cox, P. M. et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 15, 183–203 (1999).

    Article  Google Scholar 

  30. Posey, J. W. & Clapp, P. F. Global distribution of normal surface albedo. Geofis. Int. 4, 333– 348 (1964).

    Google Scholar 

Download references

Acknowledgements

I thank S.E. Lee and F.I. Woodward for providing data from the Sheffield University vegetation model, and P.M. Cox, J.M. Edwards, R.L.H. Essery, W.J. Ingram, G.J. Jenkins, J.E. Lovelock, S. Nilsson, I.C. Prentice, P.R. Rowntree, K.P. Shine, P.J. Valdes and D.A. Warrilow for advice, comments and discussion. This work forms part of the Climate Prediction Programme of the UK Department of the Environment, Transport and the Regions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Betts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Betts, R. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000). https://doi.org/10.1038/35041545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041545

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing