Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New high-pressure phases of lithium


Lithium is considered a ‘simple’ metal because, under ordinary conditions of pressure and temperature, the motion of conduction electrons is only weakly perturbed by interactions with the cubic lattice of atomic cores. It was recently predicted1 that at pressures below 100 GPa, dense Li may undergo several structural transitions, possibly leading to a ‘paired-atom’ phase with low symmetry and near-insulating properties. Here we report synchrotron X-ray diffraction measurements that confirm that Li undergoes pronounced structural changes under pressure. Near 39 GPa, the element transforms from a high-pressure face-centred-cubic phase, through an intermediate rhombohedral modification, to a cubic polymorph with 16 atoms per unit cell. This cubic phase has not been observed previously in any element; unusually, its calculated electronic density of states exhibits a pronounced semimetal-like minimum near the Fermi energy. We present total-energy calculations that provide theoretical support for the observed phase transition sequence. Our calculations indicate a large stability range of the 16-atom cubic phase relative to various other crystal structures tested here.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synchrotron X-ray diffraction diagrams of high-pressure phases of lithium.
Figure 2: Structural parameters of compressed lithium.
Figure 3: Schematic representation of the cubic crystal structure of Li near 45 GPa.
Figure 4: Calculated charge density distribution and electronic density of states of Li at a relative volume V/V0 = 0.4 (theoretical pressure 48.8 GPa).
Figure 5: Calculated enthalpy differences (relative to f.c.c.) for Li in various crystal structures as a function of pressure.


  1. Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141 (1999).

    ADS  CAS  Article  Google Scholar 

  2. Martin, R. M. Simple metals under pressure. Nature 400, 117–119 (1999).

    ADS  CAS  Article  Google Scholar 

  3. Olinger, B. & Shaner, W. Lithium, compression and high-pressure structure. Science 219, 1071 ( 1983).

    ADS  CAS  Article  Google Scholar 

  4. Hanfland, M., Loa, I., Syassen, K., Schwarz, U. & Takemura, K. Equation of state of lithium to 21 GPa. Solid State Commun. 112, 123–127 (1999).

    ADS  CAS  Article  Google Scholar 

  5. Struzhkin, V. V., Hemley, R. J. & Mao, H. K. Compression of lithium to 120 GPa. Bull. Am. Phys. Soc. 44, 1489 (1999 ).

    Google Scholar 

  6. Schwarz, U., Takemura, K., Hanfland, M. & Syassen, K. Crystal structure of cesium-V. Phys. Rev. Lett. 81, 2711–2714 (1998).

    ADS  CAS  Article  Google Scholar 

  7. Schwarz, U., Grzechnik, A., Syassen, K., Loa, I. & Hanfland, M. Rubidium-IV: a high pressure phase with complex crystal structure. Phys. Rev. Lett. 83 , 4085–4088 (1999).

    ADS  CAS  Article  Google Scholar 

  8. Overhauser, A. W. Crystal structure of lithium at 4.2 K. Phys. Rev. Lett. 53, 64–65 (1984).

    ADS  CAS  Article  Google Scholar 

  9. Vaks, V. G. et al. An experimental and theoretical study of martensitic phase transitions in Li and Na under pressure. J. Phys. Condens. Matter 1, 5319–5335 ( 1989).

    ADS  CAS  Article  Google Scholar 

  10. Smith, H. G., Berliner, R., Jorgensen, J. D., Nielsen, M. & Trivisonno, J. Pressure effects on the martensitic transformation in metallic lithium. Phys. Rev. B 41 , 1231–1234 (1990).

    ADS  CAS  Article  Google Scholar 

  11. Pearson, W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys Vol. 2 (Pergamon, Oxford, 1967).

    Google Scholar 

  12. O'Keeffe, M. & Hyde, B. G. Crystal Structures (Mineralogical Society of America, Washington DC, 1996).

    Google Scholar 

  13. Wells, A. F. Structural Inorganic Chemistry 5th edn (Oxford Univ. Press, Oxford, 1984).

    Google Scholar 

  14. Takemura, K., Minomura, S. & Shimomura, O. X-ray diffraction study of electronic transitions in cesium under high pressure. Phys. Rev. Lett. 49, 1772–1775 (1982).

    ADS  CAS  Article  Google Scholar 

  15. Olijnyk, H. & Holzapfel, W. B. Phase transitions in K and Rb under pressure. Phys. Lett. A 99, 381 –386 (1983).

    ADS  Article  Google Scholar 

  16. Winzenick, M., Vijayakumar, V. & Holzapfel, W. B. High pressure x-ray diffraction of potassium and rubidium up to 50 GPa. Phys. Rev. B 50, 12381–12385 (1994).

    ADS  CAS  Article  Google Scholar 

  17. Von Schnering, H. G. & Nesper, R. How nature adapts chemical structures to curved surfaces. Angew. Chem. Int. Edn Engl. 26, 1059–1080 ( 1987).

    Article  Google Scholar 

  18. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  Article  Google Scholar 

  19. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975).

    ADS  CAS  Article  Google Scholar 

  20. Singh, D. J. Planewaves, Pseudopotentials and the LAPW Method (Kluwer, Boston, 1994).

    Book  Google Scholar 

  21. Methfessel, M. Elastic constants and phonon frequencies of Si calculated by a fast full-potential linear-muffin-tin-orbital method. Phys. Rev. B 38, 1537–1540 (1988).

    ADS  CAS  Article  Google Scholar 

  22. Fortov, V. E. et al. Anomalous electrical conductivity of lithium under quasi-isentropic compression to 60 GPa (0.6 Mbar). Transition into a molecular phase? JETP Lett. 70, 628–632 ( 1999).

    ADS  CAS  Article  Google Scholar 

  23. Mori, Y., Zha, C.-S. & Ruoff, A. L. in Science and Technology of High Pressure (eds Manghani, M. H., Nellis, W. J. & Nicol, M. F.) (Univ. Press India, Hyderabad, 2000).

    Google Scholar 

  24. Overhauser, A. W. Exchange and correlation instabilities of simple metals. Phys. Rev. 167, 691–698 ( 1968).

    ADS  CAS  Article  Google Scholar 

  25. Boettger, J. C. & Trickey, S. B. Equation of state and properties of lithium. Phys. Rev. B 32, 3391–3398 (1985).

    ADS  CAS  Article  Google Scholar 

  26. Sternheimer, R. On the compressibility of metallic cesium. Phys. Rev. 78, 235–243 (1950).

    ADS  CAS  Article  Google Scholar 

  27. McMahan, A. K. Alkali metal structures above the s-d transition. Phys. Rev. B 29, 5982–5985 ( 1984).

    ADS  CAS  Article  Google Scholar 

  28. Lin, T. H. & Dunn, K. J. High-pressure and low-temperature study of the electrical resistance of lithium. Phys. Rev. B 33, 807–811 (1986).

    ADS  CAS  Article  Google Scholar 

  29. Nelmes, R. J. & McMahon, M. I. in High Pressure in Semiconductor Physics Vol. 1, 146–246 (Academic, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Syassen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanfland, M., Syassen, K., Christensen, N. et al. New high-pressure phases of lithium. Nature 408, 174–178 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing