Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles

Abstract

Between 1.5 and 0.6 Myr ago, the period of the Earth's glacial cycles changed from 41 kyr, the period of the Earth's obliquity cycles, to 100 kyr, the period of the Earth's orbital eccentricity1,2, which has a much smaller effect on global insolation. The timing of this transition and its causes pose one of the most perplexing problems in palaeoclimate research3. Here we use complex demodulation to examine the phase evolution of precession and semiprecession cycles—the latter of which are phase-coupled to both precession and eccentricity—in the tropical and extra-tropical Atlantic Ocean. We find that about 1.5 Myr ago, tropical semiprecession cycles (with periods of about 11.5 kyr) started to propagate to higher latitudes, coincident with a growing amplitude envelope of the 100-kyr cycles. Evidence from numerical models suggests that cycles of about 10 kyr in length may be required to explain the high amplitude of the 100-kyr cycles4. Combining our results with consideration of a modern analogue, we conclude that increased heat flow across the equator or from the tropics to higher latitudes around 1.5 Myr ago strengthened the semiprecession cycle in the Northern Hemisphere, and triggered the transition to sustained 100-kyr glacial cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen isotope and calcium carbonate accumulation time series.
Figure 2: Instantaneous phase determined by complex demodulation.

Similar content being viewed by others

References

  1. Raymo, M. E., Ruddiman, W. F. & Clement, B. M. in Initial Reports Deep Sea Drilling Project: Leg 96 (eds Ruddiman, W. F. et al.) 895–901 (US Government Printing Office, Washington DC, 1986 ).

    Google Scholar 

  2. Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353–412 ( 1989).

    Article  ADS  Google Scholar 

  3. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the earth's orbit: pacemaker of the ice ages. Science 194, 1121– 1131 (1976).

    Article  ADS  CAS  Google Scholar 

  4. LeTreut, H. & Ghil, M. Orbital forcing, climatic interactions, and glaciation cycles. J. Geophys. Res. 88, 5167–5190 (1983).

    Article  ADS  Google Scholar 

  5. Chen, J., Farrell, J. W., Murray, D. W. & Prell, W. L. Timescale and paleoceanographic implications of a 3.6 m.y. oxygen isotope record from the northeast Indian Ocean (Ocean Drilling Program site 758). Paleoceanography 10, 21– 47 (1995).

    Article  ADS  Google Scholar 

  6. Park, J. & Maasch, K. A. Plio-Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records. J. Geophys. Res. 98, 447–461 ( 1993).

    Article  ADS  Google Scholar 

  7. Rial, J. A. Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity. Science 285, 564–569 (1999).

    Article  CAS  Google Scholar 

  8. Hagelberg, T., Pisias, N. & Elgar, S. Linear and nonlinear couplings between orbital forcing and the marine δ18O record during the Late Neogene. Paleoceanography 6, 729–746 (1991).

    Article  ADS  Google Scholar 

  9. Raymo, M. E., Ruddiman, W. F., Shackleton, N. J. & Oppo, D. W. Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y. Earth Planet. Sci. Lett. 97, 353–368 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Bickert, T., Cordes, R. & Wefer, G. in Proceedings of the Ocean Drilling Program, Scientific Results, Leg 154 (eds Shackleton, N. J., Curry, W. B., Richter, C. & Bralower, T. J.) 229–237 (Ocean Drilling Program, College Station, Texas, 1997).

    Google Scholar 

  11. Clemens, S. C., Murray, D. W. & Prell, W. L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943– 948 (1996).

    Article  ADS  CAS  Google Scholar 

  12. deMenocal, P. & Bloemendal, J. in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 262–288 (Yale Univ. Press, New Haven, Connecticut, 1995).

    Google Scholar 

  13. Bloemendal, J., Liu, X. M. & Rolph, T. C. Correlation of the magnetic susceptibility of Chinese loess and the marine oxygen isotope record: Chronological and palaeoclimatic implications. Earth Planet. Sci. Lett. 131, 371–380 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Maasch, K. A. & Saltzman, B. A low-order dynamical model of global climatic variability over the full Pleistocene. J. Geophys. Res. 95, 1955–1963 ( 1990).

    Article  ADS  Google Scholar 

  15. Saltzman, B. & Verbitsky, M. Late Pleistocene climate trajectory in the phase space of global ice, ocean state, and CO2: Observations and theory. Paleoceanography 9, 767– 779 (1994).

    Article  ADS  Google Scholar 

  16. Herbert, T. D. & Fischer, A. G. Milankovitch climate origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743 ( 1986).

    Article  ADS  CAS  Google Scholar 

  17. D'Hondt, S., King, J. & Gibson, C. Oscillatory marine response to the Cretaceous-Tertiary impact. Geology 24, 611– 614 (1996).

    Article  ADS  Google Scholar 

  18. Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T. & North, G. R. Filtering of Milankovitch cycles by Earth's geography. Quat. Res. 35, 157 –173 (1991).

    Article  Google Scholar 

  19. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).

    Article  ADS  Google Scholar 

  20. Servain, J. & Legler, D. M. Emperical orthogonal function analysis of tropical Atlantic sea surface temperature and wind stress: 1964–1979. J. Geophys. Res. 91, 14181– 14191 (1986).

    Article  ADS  Google Scholar 

  21. Merle, J. Seasonal variation of heat-storage in the tropical Atlantic Ocean. Oceanol. Acta 3, 455–463 (1980).

    Google Scholar 

  22. Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Molfino, B. & McIntyre, A. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography 5, 977–1008 (1990).

    Article  ADS  Google Scholar 

  24. McIntyre, A. & Molfino, B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274 , 1867–1870 (1996).

    Article  ADS  CAS  Google Scholar 

  25. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Clement, A., Seager, R. & Cane, M. Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleoceanography 14, 441–456 (1999).

    Article  ADS  Google Scholar 

  27. Raymo, M. E., Ruddiman, W. F., Backman, J., Clement, B. M. & Martinson, D. G. Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic Deep Water circulation. Paleoceanography 4, 413– 446 (1989).

    Article  ADS  Google Scholar 

  28. Ruddiman, W. F. & Raymo, M. in Initial Reports of the Deep Sea Drilling Project: Leg 96 (eds Ruddiman, W. F., Kidd, R. B. & Thomas, E.) 855–878 (US Government Printing Office, Washington, 1986).

    Google Scholar 

  29. Bloomfield, P. Fourier Analysis of Time Series: An Introduction 1– 258 (Wiley, New York, 1976).

    MATH  Google Scholar 

  30. Ruddiman, W. F., Kidd, R. B., Thomas, E. et al. Initial Reports of the Deep Sea Drilling Program: Leg 96 1251 (US Government Printing Office, Washington DC, 1987).

    Google Scholar 

Download references

Acknowledgements

We thank R. Tiedemann for providing the data from Site 659 and M. Raymo for data from Site 607. K. Maasch and M. E. Mann provided helpful comments. This work was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Rutherford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutherford, S., D'Hondt, S. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles. Nature 408, 72–75 (2000). https://doi.org/10.1038/35040533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040533

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing