Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A photorefractive organically modified silica glass with high optical gain

Abstract

Photorefractive materials1 exhibit a spatial modulation of the refractive index due to redistribution of photogenerated charges in an optically nonlinear medium. As such, they have the ability to manipulate light and are potentially important for optical applications1 including image processing, optical storage, programmable optical interconnects and simulation of neural networks. Photorefractive materials are generally crystals, polymers and glasses with electro-optic or birefringent properties and non-centrosymmetric structure2. Here we report the photorefractive effect in both non-centrosymmetric and centrosymmetric azo-dye-doped silica glasses, in which refractive index gratings that are spatially phase-shifted with respect to the incident light intensity pattern are observed. The effect results from a non-local response of the material to optical illumination, and enables the transfer of energy between two interfering light beams (asymmetric two-beam coupling). Although the writing time for the present grating is relatively slow, we have achieved a two-beam coupling optical gain of 188 cm-1 in the centrosymmetric glasses, and a gain of 444 cm-1 in the non-centrosymmetric structures. The latter are fabricated using a corona discharge process3 to induce a permanent arrangement of azo-dye chromophores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of the organic dopants and sol–gel precursors used in the synthesis of the photorefractive glass.
Figure 2: Geometry used for the two-beam-coupling and degenerate four-wave-mixing experiments in photorefractive glass.
Figure 3: The two-beam-coupling signal measured in non-centrosymmetric and centrosymmetric glassy films.

Similar content being viewed by others

References

  1. Petrov, M. P., Stepanov, S. I. & Khomenko, A. V. Photorefractive Crystals in Coherent Optical Systems (Springer, Berlin, 1991).

    Book  Google Scholar 

  2. Nolte, D. D. (ed.) Photorefractive Effects and Materials (Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  3. Southgate, P. D. Room-temperature poling and morphology changes in pyroelectric polyvinylidene fluoride. Appl. Phys. Lett. 28, 250– 252 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Brinker, C. J. & Scherer, G. W. Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990).

    Google Scholar 

  5. Ebelmen, J. J. Sur les éthers siliciques. C.R. Acad. Sci. 19 , 398–400 (1844).

    Google Scholar 

  6. Meerholz, K., Volodin, B. L., Sandalphon, Kippelen, B. & Pyghambarian, N. A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497–500 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Chaput, F., Riehl, D., Lévy, Y. & Boilot, J.-P. New nonlinear sol-gel films exhibiting photorefractivity. Chem. Mater. 5, 589–590 ( 1993).

    Article  CAS  Google Scholar 

  8. Mardner, S. R., Kippelen, B., Jen, A. K.-Y. & Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388, 845– 851 (1997).

    Article  ADS  Google Scholar 

  9. Eichler, H. J., Günter, P. & Pohl, D. W. Laser-Induced Dynamic Gratings (Springer, Berlin, 1986).

    Book  Google Scholar 

  10. Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909–2947 ( 1969).

    Article  Google Scholar 

  11. Ducharme, S., Scott, J. C., Twieg, R. J. & Moerner, W. E. Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846–1849 ( 1991).

    Article  ADS  CAS  Google Scholar 

  12. Darracq, B. et al. Stable photorefractive memory effect in sol-gel materials. Appl. Phys. Lett. 70, 292– 294 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Moerner, W. E., Grunnet-Jepsen, A. & Thompson, C. L. Photorefractive polymers. Annu. Rev. Mater. Sci. 27, 586–623 ( 1997).

    Article  ADS  Google Scholar 

  14. Boyd, R. W. Nonlinear Optics 413 (Academic, London, 1992).

    Google Scholar 

  15. Moerner, W. E., Silence, S. M., Hache, F. & Bjorklund, G. C. Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11, 320–330 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Mitchell, G. R., O'Leary, S. V. & Smith, M. A. Multiple grating formation in photorefractive polymers. Polym. Preprints 38, 510– 511 (1997).

    CAS  Google Scholar 

  17. Sandalphon et al. Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers. Opt. Lett. 19, 68 –70 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Kippelen, B., Meerholz, K. & Peyghambarian, N. in Nonlinear Optics of Organic Molecules and Polymers (eds Nalwa, H. S. & Miyata, S.) 465–484 (CRC Press, Boca Raton, 1997).

    Google Scholar 

  19. Todorov, T., Nikolova, L. & Tomova, N. Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 23, 4309–4312 ( 1984).

    Article  ADS  CAS  Google Scholar 

  20. Gibbons, W. M., Shannon, P. J., Sun, S.-T. & Swetlin, B. J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 351, 49–50 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Sekkat, Z. & Dumont, M. Polarization effects in photoisomerization of azo dyes in polymeric films. Appl. Phys. B 53, 121–123 (1991).

    Article  ADS  Google Scholar 

  22. Sekkat, Z. & Dumont, M. Photoassisted poling of azo dye doped polymeric films at room temperature. Appl. Phys. B 54, 486–489 (1992).

    Article  ADS  Google Scholar 

  23. Enomoto, T. et al. Electrostatically induced isomerization of azobenzene derivatives in Langmuir-Blodgett films. J. Phys. Chem. B 101, 7422–7427 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Kukhtarev, S. Janz, J. Roovers and I. Lévesque for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Cheben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheben, P., del Monte, F., Worsfold, D. et al. A photorefractive organically modified silica glass with high optical gain. Nature 408, 64–67 (2000). https://doi.org/10.1038/35040513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040513

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing