Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Secrets of actin-based motility revealed by a bacterial pathogen

Abstract

Actin-based cell motility is a complex process involving a dynamic, self-organizing cellular system. Experimental problems initially limited our understanding of this type of motility, but the use of a model system derived from a bacterial pathogen has led to a breakthrough. Now, all the molecular components necessary for dynamic actin self-organization and motility have been identified, setting the stage for future mechanistic studies.

Key Points

  • Crawling cells, such as epithelial cells, fibroblasts or neurons, have at their front a broad, flat region known as a lamellipodium. This region of the cell is filled with a dense meshwork of actin filaments and contains all of the machinery necessary for amoeboid motility. Actin assembly occurs primarily at the front of lamellipodia.

  • F-actin is also responsible for the intracellular movement of the bacterial pathogen Listeria monocytogenes. Its comet tail resembles a simplified lamellipodium, and the bacterial surface imitates the plasma membrane at the leading edge.

  • The Arp2/3 complex is localized to the leading edge of several cell types, and it is found throughout the actin comet tail. Arp2/3, which is activated by the surface protein, ActA, is responsible for the nucleation of actin polymerization at the bacterial surface.

  • Capping the growing barbed ends of older filaments (by capping protein CapZ and/or gelsolin) is one mechanism that could prevent the continuing elongation of older filaments. ActA may indirectly suppress capping close to the bacterial surface.

  • ADF/cofilin controls filament depolymerization.

  • Arp2/3 binds to the side of a pre-existing filament as it nucleates the growth of a new filament, so the meshwork forming at the front of the comet tail or the leading edge of the lamellipodium is effectively crosslinked at birth. In addition, numerous F-actin crosslinking proteins are found throughout the comet tail, including fimbrin and α-actinin.

  • L. monocytogenes motility can be reconstituted in vitro with a mixture of the following proteins: actin, Arp2/3, VASP, profilin, capping protein, ADF/cofilin and α-actinin, along with a steady supply of ATP. Of these proteins, only actin, Arp2/3, ADF/cofilin and capping protein are absolutely required for motility. VASP and profilin increase the rate of movement, and α-actinin stabilizes the tail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A rapidly moving cell; a keratocyte from the skin of a fish.
Figure 2: Movement of Listeria monocytogenes in an infected host cell.
Figure 3: Reconstitution of Listeria monocytogenes motility in a cytoplasmic extract.
Figure 4: Diagram of the molecular components required for actin-based motility of Listeria monocytogenes.
Figure 5: Functions of similar proteins in the lamellipodium.

Similar content being viewed by others

References

  1. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 ( 1984).

    Article  CAS  PubMed  Google Scholar 

  3. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm . Curr. Biol. 9, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602 (1985).These photobleaching studies show that actin monomers are added at the leading edge and that the actin meshwork translocates backward towards the centre of the cell in a stationary lamellipodium.

    Article  CAS  PubMed  Google Scholar 

  5. Okabe, S. & Hirokawa, N. Actin dynamics in growth cones . J. Neurosci. 11, 1918– 1929 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone . J. Cell Biol. 107, 1505– 1516 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126– 131 (1991).Shows that the rate of cell motility is directly related to the rate of actin filament assembly at the leading edge and that filaments further back in the lamellipodium remain stationary as the rapidly moving cell translocates over them.

    Article  CAS  PubMed  Google Scholar 

  8. Theriot, J. A. & Mitchison, T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J. Cell Biol. 119, 367–377 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Zigmond, S. H. Recent quantitative studies of actin filament turnover during cell locomotion . Cell Motil. Cytoskeleton 25, 309– 316 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Shariff, A. & Luna, E. J. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science 256, 245–247 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Oster, G. F. & Perelson, A. S. The physics of cell motility . J. Cell Sci. 8, S35–S54 (1987).

    Article  Google Scholar 

  12. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597 –1608 (1989).This is the initial publication showing that the bacterial pathogen, Listeria monocytogenes , associates with host cytoplasmic actin, suggesting that these bacteria move within and between cells in some manner involving the actin cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  13. Mounier, J., Ryter, A., Coquis-Rondon, M. & Sansonetti, P. J. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco- 2. Infect. Immunol. 58, 1048–1058 (1990).

    CAS  Google Scholar 

  14. Makino, S., Sasakawa, C., Kamata, K., Kurata, T. & Yoshikawa, M. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 46, 551–555 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  15. Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA 86, 3867–3871 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA 87, 6068–6072 ( 1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robbins, J. R. et al. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146, 1333–1350 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theriot, J. A. The cell biology of infection by intracellular bacterial pathogens. Annu. Rev. Cell. Dev. Biol. 11, 213– 239 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immunol. 60, 3609–3619 (1992). Shows that actin monomers add to the tail only at the bacterial surface whereas α–actinin and tropomyosin are found throughout the tail, and suggests that actin polymerization may provide the force for motility.

    CAS  Google Scholar 

  20. Tilney, L. G., DeRosier, D. J., Weber, A. & Tilney, M. S. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J. Cell Biol. 118, 83–93 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992). Shows that the rate of bacterial motility is the same as the rate of actin polymerization and that actin depolymerization is independent of position in the comet tail.

    Article  CAS  PubMed  Google Scholar 

  22. Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J. & Mitchison, T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell 76, 505– 517 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).Shows that the bacterial surface protein ActA is required for actin-based motility of Listeria monocytogenes.

    Article  CAS  PubMed  Google Scholar 

  24. Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11, 1981–1990 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kocks, C. et al. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively . Mol. Microbiol. 18, 413– 423 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, G. A., Portnoy, D. A. & Theriot, J. A. Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility . Mol. Microbiol. 17, 945– 951 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization . Proc. Natl Acad. Sci. USA 96, 4908– 4913 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14, 1314–1321 (1995). This was the first identification of a host-cell cytoskeletal protein (VASP) able to interact directly with a bacterial virulence factor (ActA).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 14, 1583–1589 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol. 130, 331–343 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F. & Lindberg, U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Goldschmidt-Clermont, P. J. et al. The control of actin nucleotide exchange by thymosin β 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol. Biol. Cell 3, 1015– 1024 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pantaloni, D. & Carlier, M. F. How profilin promotes actin filament assembly in the presence of thymosin β 4. Cell 75, 1007–1014 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 135, 647– 660 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lasa, I., David, V., Gouin, E., Marchand, J. B. & Cossart, P. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18, 425–436 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Pistor, S., Chakraborty, T., Walter, U. & Wehland, J. The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Curr. Biol. 5, 517–525 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  37. Niebuhr, K. et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 16, 5433–5444 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics . Cell 87, 227–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144 , 1245–1258 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geese, M. et al. Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed . J. Cell Sci. 113, 1415– 1426 (2000).

    CAS  PubMed  Google Scholar 

  41. Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins . Cell 101, 717–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 ( 1997).Using a visual assay to detect nucleation of an actin cloud at the surface of the bacterial pathogen, L. monocytogenes , a seven-member protein complex responsible for actin filament nucleation was isolated.

    Article  CAS  PubMed  Google Scholar 

  43. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol. 127 , 107–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998). Shows that Arp2/3 has a high affinity for the pointed end of actin filaments in addition to side binding, and leads to a model for actin filament network branching that is the current model for actin assembly at the leading edge.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105– 108 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol. 150, 527–537 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999). This is a beautiful study using correlative light and electron microscopy to compare protein localization and structure of the actin network in the lamellipodia of fast moving keratocytes and slower moving fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mullins, R. D., Stafford, W. F. & Pollard, T. D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol. 136, 331–343 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375– 384 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17, 2767– 2776 (1998).Shows that N–WASP, a known activator of Arp2/3, mediates actin tail formation at the pole of S. flexneri through the bacterial surface protein VirG (IcsA), linking bacteria to the other host cell factors that help assemble the comet tail.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. David, V. et al. Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach. J. Cell Sci. 111, 2877–2884 (1998).

    CAS  PubMed  Google Scholar 

  52. Laine, R. O. et al. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect. Immunol. 66, 3775–3782 (1998).

    CAS  Google Scholar 

  53. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771– 781 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maciver, S. K., Zot, H. G. & Pollard, T. D. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J. Cell Biol. 115, 1611–1620 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 ( 1997).Shows that the actin depolymerization rate in vitro is directly affected by ADF/cofilin in a concentration-dependent fashion and that addition of ADF to cell extracts increases turnover rate in L. monocytogenes actin tails.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. & Mitchison, T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol. 136, 1323– 1332 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lappalainen, P. & Drubin, D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82 (1997). Using a yeast genetic study, provides in vivo evidence that cofilin, an actin depolymerizing factor, does in fact enhance filament depolymerization in cells.

    Article  CAS  PubMed  Google Scholar 

  58. Bamburg, J. R. & Bray, D. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105, 2817–2825 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  59. Prevost, M. C. et al. Unipolar reorganization of F-actin layer at bacterial division and bundling of actin filaments by plastin correlate with movement of Shigella flexneri within HeLa cells. Infect. Immunol. 60, 4088–4099 (1992).

    CAS  Google Scholar 

  60. Dold, F. G., Sanger, J. M. & Sanger, J. W. Intact α-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil. Cytoskeleton 28, 97–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325– 327 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613 –616 (1999).Identifies the minimal set of proteins required for the reconstitution of actin-based motility with purified components for both L. monocytogenes and S. flexneri motility, and demonstrates that no myosin motor is required.

    Article  CAS  PubMed  Google Scholar 

  63. Theriot, J. A. The polymerization motor. Traffic 1, 19– 28 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol. 78, 1–125 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  65. Mogilner, A. & Oster, G. Cell motility driven by actin polymerization . Biophys. J. 71, 3030– 3045 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gerbal, F. et al. Measurement of the elasticity of the actin tail of Listeria monocytogenes. Eur. Biophys. J. 29, 134–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kuo, S. C. & McGrath, J. L. Steps and fluctuations of Listeria monocytogenes during actin–based motility. (submitted).

  69. Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  70. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279 , 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326– 5335 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin- depolymerizing protein N-WASP . Nature 391, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Bear, J. E., Rawls, J. F. & Saxe, C. L., SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol. 142, 1325–1335 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769–782 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  78. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385–391 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  80. Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein IcsA is sufficient to direct actin- based motility . Proc. Natl Acad. Sci. USA 92, 6572– 6576 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mimuro, H. et al. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J. Biol. Chem. 275, 28893–28901 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstadt, T. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immunol. 61, 1926–1935 (1993).

    CAS  Google Scholar 

  83. Teysseire, N., Chiche-Portiche, C. & Raoult, D. Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res. Microbiol. 143, 821–829 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  84. Heinzen, R. A., Grieshaber, S. S., Van Kirk, L. S. & Devin, C. J. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells . Infect. Immunol. 67, 4201– 4207 (1999).

    CAS  Google Scholar 

  85. Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112, 1697– 1708 (1999).

    CAS  PubMed  Google Scholar 

  86. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91 , 511–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).Demonstrates that a virus moves by actin-based motility in host cells, expanding the realm of this type of motility to another system which has a different shape and possibly a new way to form a polarized actin tail.

    Article  CAS  PubMed  Google Scholar 

  89. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926– 929 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519– 530 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72– 74 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  96. Schafer, D. A., Mooseker, M. S. & Cooper, J. A. Localization of capping protein in chicken epithelial cells by immunofluorescence and biochemical fractionation. J. Cell Biol. 118, 335–346 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  97. Cooper, J. A., Loftus, D. J., Frieden, C., Bryan, J. & Elson, E. L. Localization and mobility of gelsolin in cells. J. Cell Biol. 106, 1229– 1240 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP dynamics during lamellipodia protrusion. Nature Cell Biol. 1, 321–322 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  99. Lazarides, E. & Burridge, K. α–actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6, 289–298 ( 1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rachael Ream for digital time-lapse used to make Figure 1 and Movie 1. We would like to apologize to those researchers whose work could not be cited due to space limitations. J.A.T. is supported by grants from the National Institutes of Health and a Fellowship in Science and Engineering from the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. Theriot.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Theriot lab homepage

ENCYCLOPEDIA OF LIFE SCIENCES

Actin and actin filaments

Glossary

AMOEBOID MOTILITY

A distinctive form of cell crawling typified by Amoeba proteus, which involves extension of pseudopodia and cytoplasmic streaming.

FIBROBLAST

Common cell type found in connective tissue in many parts of the body, which secretes an extracellular matrix rich in collagen and other macromolecules and connects cell layers.

KERATOCYTE

A small, motile cell type found in the epidermis of fish and amphibians.

LEADING EDGE

The thin margin of a lamellipodium spanning the area of the cell from the plasma membrane to about 1 μm back into the lamellipodium.

GROWTH CONE

Motile tip of the axon or dendrite of a growing nerve cell, which spreads out into a large cone-shaped appendage.

BROWNIAN RATCHET MODEL

A proposed model for actin-based motility in which actin filaments are thought to flex away from the bacterial surface to allow addition of monomer at the end of the filament. When the filament flexes back, it is one subunit longer and pushes the bacterium forward that distance.

BULK ELASTIC MODEL

A proposed model for actin-based motility, which treats the actin comet tail as a cohesive elastic gel that responds elastically to deformation. This indicates that the energy from actin polymerization may be stored as elastic energy in the actin gel to produce force that propels the bacterium forward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, L., Giardini, P., Soo, F. et al. Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol 1, 110–119 (2000). https://doi.org/10.1038/35040061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing