Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cadherins in embryonic and neural morphogenesis

Abstract

Cadherins not only maintain the structural integrity of cells and tissues but also control a wide array of cellular behaviours. They are instrumental for cell and tissue polarization, and they regulate cell movements such as cell sorting, cell migration and cell rearrangements. Cadherins may also contribute to neurite outgrowth and pathfinding, and to synaptic specificity and modulation in the central nervous system.

Key Points

  • The cadherin superfamily is one of the main groups of adhesion molecules that mediate cell?cell adhesion in both vertebrates and invertebrates.

  • This diverse superfamily, with over 300 vertebrate members, is defined by the presence of a cadherin domain. A classification of seven subfamilies is presented in this review, on the basis of the domain layout.

  • A predominant function of cadherins is to mediate cell?cell interactions. Structural studies indicate that cadherins form cis dimers in a calcium-dependent manner. Cis dimers are presumably the building blocks for lateral clustering and for trans-dimer formation between cells.

  • Classic cadherins mediate two types of adhesive contacts: diffuse adhesive contacts and ultrastructurally defined cell?cell adherens junctions.

  • Diffuse adhesive contacts are probably formed by oligomerization of cadherin trans dimers. Invertebrate studies indicate that cadherins are not absolutely required for adherens junction formation.

  • Cadherins are also important for forming and maintaining cell polarity in epithelial tissues. Here, they are proposed to mediate localization of the sec 6/8 complex, which in turn directs polarized delivery of molecular components to the membrane.

  • In the fly, cadherins are implicated in mediating planar epithelial polarity. Evidence from both Drosophila and the chick highlight another function for cadherins in generating asymmetric tissue organization, by setting up anterior?posterior and left?right asymmetry, respectively.

  • Cell movements that occur during development require dynamic changes in adhesive interactions. Experiments in Xenopus and Drosophila indicate that cadherins might mediate cell movement during gastrulation and oogenesis, respectively.

  • Cadherins are implicated in central nervous system organization, neurite outgrowth, axon patterning and fasciculation. Later, they are proposed to function in adherens junctions at the synapse. They may be required here to mediate synaptic plasticity, perhaps by providing an adhesive code.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the cadherin domain.
Figure 2: Structural diversity of the cadherin superfamily.
Figure 3: Ca2+-mediated cis- and trans-dimer formation of vertebrate classic cadherins.
Figure 4: Comparison between cadherin-mediated adhesive interactions at epithelial and synaptic adherens junctions.
Figure 5: Cadherins in apicobasal and planar epithelial polarity.
Figure 6: Cell movements that involve cadherins.

Similar content being viewed by others

References

  1. Steinberg, M. S. Reconstruction of tissue by dissociated cells. Science 141, 401?408. (1963).

    Article  CAS  PubMed  Google Scholar 

  2. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections . Proc. Natl Acad. Sci. USA 50, 703? 710 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Gumbiner, B. M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis . Cell 84, 345?579 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hynes, R. O. Cell adhesion: Old and new questions. Trends Cell Biol. 9, M33?M37 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53?120 (1955).

    Article  Google Scholar 

  6. Nose, A. & Nagafuchi, A., & Takeichi, M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54, 993? 1001 (1988).This paper shows for the first time cadherin-mediated cell sorting in cell-culture cells.

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg, M. S. & Takeichi, M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl Acad. Sci. USA 91, 206?209 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Godt, D. & Tepass, U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387?391 (1998). This paper documents for the first time an in vivo cell sorting process that is driven by differential expression of a cadherin.

    Article  CAS  PubMed  Google Scholar 

  9. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123 ?1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451?1455 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, E. F. S., Brar, S. K., Sesaki, H., Yang, C. & Siu, C. H. Molecular cloning and characterization of DdCAD-1, a Ca2+-dependent cell?cell adhesion molecule, in Dictyostelium discoideum. J. Biol. Chem. 271, 16399 ?16408 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Gallin, W. J. Evolution of the 'classical' cadherin family of cell adhesion molecules in vertebrates. Mol. Biol. Evol. 15, 1099? 1107 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Yagi, T. & Takeichi, M. Cadherin superfamily genes: Functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169?1180 (2000).

    CAS  PubMed  Google Scholar 

  14. Nollet, F., Kools, P. & van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299, 551?72 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Q. & Maniatis, T. A. striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779?790 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  16. Sugino, H. et al. Genomic organization of the family of CNR cadherin genes in mice and humans. Genomics 63, 75? 87 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hutter, H. et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287, 989?994 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Overduin, M. et al. Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267, 386?389 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro, L. et al. Structural basis of cell?cell adhesion by cadherins . Nature 374, 327?337 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Nagar, B., Overduin, M., Ikura, M. & Rini, J. M. Structural basis of calcium-induced E?cadherin rigidification and dimerization. Nature 380, 360?364 ( 1996).This is one of several papers (see also refs 18?26, 31 ) that describe the three-dimensional structure of the cadherin domain, and analyse the role of calcium ions in the formation of cadherin dimers.

    Article  CAS  PubMed  Google Scholar 

  21. Pertz, O. et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E?cadherin homoassociation. EMBO J. 18, 1738?1747 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamura, K., Shan, W. S., Hendrickson, W. A., Colman, D. R. & Shapiro, L. Structure?function analysis of cell adhesion by neural (N-) cadherin. Neuron 20 , 1153?1163 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ozawa, M., Engel, J. & Kemler, R. Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63,1033?1038 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  24. Pokutta, S., Herrenknecht, K., Kemler, R. & Engel, J. Conformational changes of the recombinant extracellular domain of E?cadherin upon calcium binding. Eur. J. Biochem. 223, 1019?1026 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Baumgartner, W. et al. Cadherin interaction probed by atomic force microscopy. Proc. Natl Acad. Sci. USA 97, 4005? 4010 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Hyafil, F., Babinet, C. & Jacob, F. Cell?cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell 26 , 447?454 (1981)

    Article  CAS  PubMed  Google Scholar 

  27. Brieher, W. M., Yap, A. S., & Gumbiner, B. M. Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487?496 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Alattia, J. R. et al. Lateral self-assembly of E-cadherin directed by cooperative calcium binding. FEBS Lett. 417, 405? 408 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Yap, A. S., Brieher, W. M., Pruschy, M. & Gumbiner, B. M. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7, 308? 315 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Shan, W. S. et al. Functional cis-heterodimers of N- and R-cadherins. J. Cell Biol. 148, 579?590 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomschy, A., Fauser, C., Landwehr, R. & Engel, J. Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N?terminal domains. EMBO J. 15, 3507? 3514 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61,147? 155 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Blaschuk, O. W., Sullivan, R., David, S. & Pouliot, Y. Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 139, 227?229 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B. & Leckband, D. Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc. Natl Acad. Sci. USA 96, 11820?11824 ( 1999).A recent paper that suggests a new model of cadherin trans -dimer formation.

    Article  CAS  PubMed  Google Scholar 

  35. Costa, M. et al. A putative catenin?cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297?308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raich, W. B., Agbunag, C. & Hardin, J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 9, 1139?1146 (1999).This paper analyses the dynamics of cadherin-dependent contact formation between epithelial cells during C. elegans embryogenesis.

    Article  CAS  PubMed  Google Scholar 

  37. Uemura, T. et al. Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev. 10, 659? 671 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Tepass, U. et al. shotgun encodes Drosophila E?cadherin and is preferentially required during cell rearrangement in the neuroectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672?685 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Ohsugi, M., Larue, L., Schwarz, H. & Kemler, R. Cell-junctional and cytoskeletal organization in mouse blastocysts lacking E-cadherin. Dev. Biol. 185, 261?271 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Mandai, K. et al. Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J. Cell Biol. 139, 517?528 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mandai, K. et al. Ponsin/SH3P12: An l-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions. J. Cell Biol. 144, 1001?1017 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, K. et al. Nectin/PRR: An immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J. Cell Biol. 145, 539?549 (1999).One of a series of papers (refs 40?44 ) that describe a new protein complex that localizes to adherens junctions, and that might interact with the cadherin?catenin complex functionally.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tachibana, K. et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol. 150, 1161?1175 ( 2000).

    Article  Google Scholar 

  44. Ikeda, W. et al. Afadin: A key molecule essential for structural organization of cell?cell junctions of polarized epithelia during embryogenesis. J. Cell Biol. 146, 1117?1132 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tepass, U. Genetic analysis of cadherin function in animal morphogenesis. Curr. Opin. Cell Biol. 11, 540?548 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell. Phys. Rev. 79, 73? 98 (1999).

    CAS  Google Scholar 

  47. Oda, H., Tsukita, S. & Takeichi, M. Dynamic behavior of the cadherin-based cell?cell adhesion system during Drosophila gastrulation. Dev. Biol. 203, 435?450 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  48. Cano, A. et al. The transcription factor snail controls epithelial?mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76?83 (2000 ).

    Article  CAS  PubMed  Google Scholar 

  49. Batlle, E. et al. The transcription factor snail is a repressor of E?cadherin gene expression in epithelial tumour cells. Nature Cell Biol. 2, 84?89 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, C. L. et al. Mechanisms of epithelial cell?cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin?green fluorescent protein. J. Cell Biol. 142, 1105?1119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell?cell adhesion. Cell 100, 209?219 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  52. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell?cell contacts and specifies transport vesicle delivery to the basal?lateral membrane in epithelial cells. Cell 93, 731? 740 (1998).This paper shows a close association between the sec6/8 complex, which is involved in lateral vesicle targeting, and cadherin-based adherens junctions.

    Article  CAS  PubMed  Google Scholar 

  53. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis ? a look outside the nucleus. Science 287, 1606?1609 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Adler, P. N., Charlton, J. & Liu, J. Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering Frizzled signaling . Development 125, 959? 968 (1998).

    CAS  PubMed  Google Scholar 

  55. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98 , 585?595 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Chae, J. et al. The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. Development 126 , 5421?5429 (1999). References 55 and 56 show a role for the Flamingo/Starry Night cadherin in planar epithelial polarity. Reference 55 also shows that the subcellular distribution of Flamingo/Starry Night depends on the direction of Wnt/Frizzled signalling.

    CAS  PubMed  Google Scholar 

  57. Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247?1250 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Gonzalez-Reyes, A. & St Johnston, D. The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte . Development 125, 3635? 3644 (1998).

    CAS  PubMed  Google Scholar 

  59. Garcia-Castro, M. I., Vielmetter, E. & Bronner-Fraser, M. N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left?right asymmetry. Science 288 , 1047?1051 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Shih, J. & Keller, R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901?914 ( 1992).

    CAS  PubMed  Google Scholar 

  61. Zhong, Y., Brieher, W. M. & Gumbiner, B. M. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J. Cell Biol. 144, 351?359 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, C. H. & Gumbiner, B. M. Disruption of gastrulation movements in Xenopus by a dominant?negative mutant for C-cadherin. Dev. Biol. 171, 363?373 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, S. H., Yamamoto, A., Bouwmeester, T., Agius, E. & Robertis, E. M. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 125, 4681 ?4690 (1998).Experiments in this paper indicate an important role for a protocadherin in the convergent extension movements during frog gastrulation.

    CAS  PubMed  Google Scholar 

  64. Yamamoto, A. et al. Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development 125, 3389?3397 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76?81 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation . Nature 405, 81?85 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus brachyury: regulation of gastrulation movements via dishevelled, but not through the canonical wnt pathway. Development 127, 2227?2238 (2000).

    CAS  PubMed  Google Scholar 

  68. Niewiadomska, P., Godt, D. & Tepass, U. DE?cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144 , 533?547 (1999). This paper documents a cadherin-dependent cell migration process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell?substratum adhesiveness. Nature 385, 537? 540 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Radice, G. L. et al. Developmental defects in mouse embryos lacking N-cadherin . Dev. Biol. 181, 64?78 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Redies, C. Cadherins in the central nervous system. Prog. Neurobiol. 61, 611?648 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Espeseth, A., Marnellos, G. & Kintner, C. The role of F?cadherin in localizing cells during neural tube formation in Xenopus embryos. Development 125, 301?312 (1998).

    CAS  PubMed  Google Scholar 

  73. Senzaki, K., Ogawa, M. & Yagi, T. Proteins of the CNR family are multiple receptors for Reelin. Cell 99, 635?647 ( 1999).Protocadherins of the CNR family are identified as receptors of the extracellular matrix protein Reelin, an interaction that might contribute to the migration and differentiation of neurons within the brain cortex.

    Article  CAS  PubMed  Google Scholar 

  74. Gilmore, E. C. & Herrup, K. Cortical development: receiving reelin. Curr. Biol. 10, R162?R166 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137?1151 (1998). This paper identifies a closely related group of protocadherins that are differentially expressed in the brain and localize to synapses.

    Article  CAS  PubMed  Google Scholar 

  76. Riehl, R. et al. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837? 848 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Inoue, A. & Sanes, J. R. Lamina-specific connectivity in the brain: Regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428?1431 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  78. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77?89 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Loureiro, M. et al. Anomalous origin of the left pulmonary artery (Sling): A case report and review of the literature. Rev. Port. Cardiol. 17, 811?815 (1998).

    CAS  PubMed  Google Scholar 

  80. Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila . Genes Dev. 13, 2549? 2561 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamagata, M., Herman, J. P. & Sanes, J. R. Lamina-specific expression of adhesion molecules in developing chick optic tectum. J. Neurosci. 15, 4556?4571 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423? 434 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767?779 (1996).References 82 and 83 show that classic cadherins are components of synaptic adherens junctions.

    Article  CAS  PubMed  Google Scholar 

  84. Yamagata, K. et al. Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. J. Biol. Chem. 274, 19473?19479 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka, H. et al. Molecular modification of N?cadherin in response to synaptic activity. Neuron 25, 93? 107 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Tang, L., Hung, C. P. & Schuman, E. M. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20, 1165?1175 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Manabe, T. et al. Loss of Cadherin?11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci. 15, 534?546 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Uemura, T. The cadherin superfamily at the synapse: More members, more missions. Cell 93, 1095?1098 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  89. Shapiro, L. & Colman, D. R. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron 23, 427?430 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci. 9, 433?447 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  91. Obata, S. et al. A common protocadherin tail: Multiple protocadherins share the same sequence in their cytoplasmic domains and are expressed in different regions of brain. Cell. Adhes. Commun. 6, 323?333 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Hirano, S., Yan, Q. & Suzuki, S. T. Expression of a novel protocadherin, OL?protocadherin, in a subset of functional systems of the developing mouse brain. J. Neurosci. 19, 995?1005 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Missler, M. & Südhof, T. C. Neurexins: Three genes and 1001 products. Trends Genet. 14, 20? 26 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Schmücker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671?684 (2000).

    Article  PubMed  Google Scholar 

  95. Oda, H. & Tsukita, S. Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev. Biol. 216, 406? 422 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Hazuka, C. D. et al. The sec6/8 complex is located at neurite outgrowth and axonal synapse-assembly domains. J. Neurosci. 19, 1324?1334 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Y. Takai, J. Petite, R. Cagan and T. Uemura for communicating unpublished results. The work on cadherins in the authors' laboratories is funded by grants from the National Cancer Institute of Canada with funds from the Canadian Cancer Society (to U.T. and M.I.), the Canadian Institute for Health Research (to U.T. and D.G.), University of Toronto Connaught Committee (to D.G.), the National Institutes of Health (to M.P.), the Human Frontier Science Program (to M.P.) and the US Army Breast Cancer Research Program (to M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Tepass.

Supplementary information

Related links

Related links

FURTHER INFORMATION

The cadherin resource

Cadherin web site at the LMB, Cambridge

Pfeifer lab page

Ikura lab page

Tepass lab page

Godt and Tepass labs Drosophila cadherin resource

Godt lab page

ENCYCLOPEDIA OF LIFE SCIENCES

Adhesive specificity and the evolution of multicellularity

Glossary

GROWTH CONE

Exploratory tip of an extending neuronal process such as an axon.

IMMUNOGLOBULIN-TYPE ADHESION MOLECULES

Family of adhesion molecules characterized by the presence of immunoglobulin-like domains, which are also found in antibody molecules.

CHORDATES

Phylum that comprises animals with a notochord and includes all vertebrates.

DESMOSOME

A patch-like adhesive intercellular junction found in vertebrate tissues that is linked to intermediate filaments.

METAZOANS

Refers to the kingdom Animalia (animals) that comprises roughly 35 phyla of multicellular organisms.

ADHERENS JUNCTIONS

Cell?cell or cell?matrix adhesive junctions that are linked to microfilaments.

ECHINODERMS

Animal phylum of marine invertebrates including sea urchins and starfish.

ARTHROPODS

Largest animal phylum composed of invertebrates that have a segmented body, segmented appendages and an external skeleton. This includes insects, spiders and crustaceans.

NEMATODES

Animal phylum of unsegmented roundworms.

GENE RADIATION

Process that leads to the formation of gene families in which gene amplification through gene duplication events is followed by the diversification of gene structure and function.

ZONULA ADHERENS

A cell?cell adherens junction that forms a circumferential belt around the apical pole of epithelial cells.

PDZ DOMAINS

Protein?protein interaction domain, first found in PSD-95, DLG and ZO-1.

SH3 DOMAINS

Src homology region 3 domains. Protein sequences of about 50 amino acids that recognize and bind sequences rich in proline.

FILOPODIUM

Finger-like exploratory cell extension found in crawling cells and growth cones.

LAMELLIPODIUM

Thin sheet-like cell extension found at the leading edge of crawling cells or growth cones

FOLLICLE CELLS

In this review, the term follicle cells refers to cells that surround the developing insect egg and secrete the egg membranes, the chorion and vitelline envelope.

GASTRULATION

Series of morphogenetic movements observed during the early development of most animals that leads to the formation of a multilayered embryo with an outer cell layer (ectoderm), an inner cell layer (endoderm), and an intermediate cell layer (mesoderm).

NEUROEPITHELIUM

Epithelial layer of cells that gives rise to the nervous system.

NEURULATION

Morphogenetic process during which the progenitors of the nervous system segregate from the ectoderm.

NEURITE

Process extended by a nerve cell that can give rise to an axon or a dendrite.

FASCICULATION

Bundling of axonal processes of neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tepass, U., Truong, K., Godt, D. et al. Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1, 91–100 (2000). https://doi.org/10.1038/35040042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing