Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geometry-dominated fluid adsorption on sculpted solid substrates

Abstract

The shape1,2 and chemical composition3 of solid surfaces can be controlled at a mesoscopic scale. Exposing such structured substrates to a gas that is close to coexistence with its liquid phase can produce quite distinct adsorption characteristics compared to those of planar systems4, which may be important for technologies such as super-repellent surfaces5,6 or micro-fluidics7,8. Recent studies have concentrated on the adsorption of liquids on rough9,10,11 and heterogeneous12 substrates, and the characterization of nanoscopic liquid films13. But the fundamental effect of geometry on the adsorption of a fluid from the gas phase has hardly been addressed. Here we present a simple theoretical model which shows that varying the shape of the substrate can exert a profound influence on the adsorption isotherms of liquids. The model smoothly connects wetting and capillary condensation through a number of examples of fluid interfacial phenomena, and opens the possibility of tailoring the adsorption properties of solid substrates by sculpting their surface shape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic bulk phase diagram of a fluid showing the coexistence between gas and liquid phases.
Figure 2: Phase diagram for the adsorption isotherms at generalized solid wedges with cross-section proportional to |x|γ in the x direction.
Figure 3: Geometrical construction for determining the shape of the adsorbed layer.
Figure 4: Adsorption isotherms for solid wedges with cross-section described by a shape function proportional to |x|γ in the x direction.

Similar content being viewed by others

References

  1. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Edn 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  2. Trau, M. et al. Microscopic patterning of orientated mesoscopic silica through guided growth. Nature 390, 674– 676 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Kumar, A., Abbott, N. A., Kim, E., Biebuyck, H. A. & Whitesides, G. M. Patterned self-assembled monolayers and meso-scale phenomena. Acc. Chem. Res. 28, 219– 226 (1995).

    Article  CAS  Google Scholar 

  4. Dietrich, S. in Proceedings of the NATO-ASI “New Approaches to Old and New Problems in Liquid State Theory” (eds Caccamo, C., Hansen, J. P. & Stell, G.) 197–244 (Kluwer, Dordrecht, 1999).

    Book  Google Scholar 

  5. Shibuichi, S., Yamamoto, T., Onda, T. & Tsujii, K. Super water- and oil-repellent surfaces resulting from fractal structure. J. Colloid Interf. Sci. 208, 287–294 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Bico, J., Marzolin, C. & Quere, D. Pearl drops. Europhys. Lett. 47, 220–226 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Weigl, B. H. & Yager, P. Microfluidics—Microfluidic diffusion-based separation and detection. Science 283, 346 –347 (1999).

    Article  Google Scholar 

  8. Gravensen, P., Branebjerg, J. & Jensen, O. S. Microfluidics—a review. J. Micromech. Microeng. 3, 168–182 ( 1993).

    Article  ADS  Google Scholar 

  9. Kardar, M. & Indekeu, J. O. Adsorption and wetting transitions on rough substrates. Europhys. Lett. 12, 161–166 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Giugliarelli, G. & Stella, A. L. Discontinuous interface depinning from a rough wall. Phys. Rev. E 53, 5035–5038 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Netz, R. R. & Andelman, D. Roughness-induced wetting. Phys. Rev. E 55, 687–700 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: From microchannels to microchips. Science 283, 46–49 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Luna, M., Colchero, J. & Baro, A. M. Study of water droplets and films on graphite by noncontact scanning force microscopy. J. Phys. Chem. B 103, 9576–9581 (1999).

    Article  CAS  Google Scholar 

  14. Dietrich, S. in Phase Transitions and Critical Phenomena (eds Domb, C. & Lebowitz, J. L.) Vol. 12, 1–218 (Academic, London, 1988).

    Google Scholar 

  15. Evans, R., Marconi, U. M. B. & Tarazona, P. Fluids in narrow pores: Adsorption, capillary condensation and critical points. J. Chem. Phys. 84, 2376–2399 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Christenson, H. K. Capillary condensation due to van der Waals attraction in wet slits. Phys. Rev. Lett. 73, 1821–1824 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Concus, P. & Finn, R. On the behaviour of a capillary surface in a wedge. Proc. Natl Acad. Sci. USA 63, 292–299 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Pomeau, Y. Wetting in a corner and related questions. J. Colloid. Interf. Sci. 113, 5–11 ( 1986).

    Article  ADS  CAS  Google Scholar 

  19. Hauge, E. H. Macroscopic theory of wetting in a wedge. Phys. Rev. A 46, 4994–4998 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Neimark, A. V. & Kheifets, L. I. Solution of the problem of the equilibrium profile of the transition zone between a wetting film and the meniscus of the bulk phase in capillaries. Colloid. J. USSR 43, 402–407 ( 1981).

    Google Scholar 

  21. Rejmer, K., Dietrich, S. & Napiórkowski, M. Filling transition for a wedge. Phys. Rev. E 60, 4027–4042 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Parry, A. O., Rascón, C. & Wood, A. J. Critical effects at 3D wedge wetting. Phys. Rev. Lett. 85, 345–348 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Rascón, C. & Parry, A. O. Geometry dependent critical exponents at complete wetting. J. Chem. Phys. 112, 5175–5180 (2000).

    Article  ADS  Google Scholar 

  24. Israelachvili, J. Intermolecular & Surface Forces (Academic, London, 1991).

    Google Scholar 

  25. Marconi, U. M. B. & Van Swol, F. Microscopic model for hysteresis and phase equilibria of fluids confined between parallel plates. Phys. Rev. A 39, 4109– 4116 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

C.R. acknowledges financial support from the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Parry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rascón, C., Parry, A. Geometry-dominated fluid adsorption on sculpted solid substrates. Nature 407, 986–989 (2000). https://doi.org/10.1038/35039590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039590

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing