Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circadian clockwork: two loops are better than one

Abstract

The spectacularly successful race over the past three years to place our understanding of the circadian clockwork of mammals into a molecular framework is beginning to yield the cardinal example of the molecular-genetic control of behaviour. This perspective describes recent evidence for the conservation of a double-loop, autoregulatory feedback mechanism across the best understood eukaryotic circadian systems, and discusses how these findings may illuminate some long-standing puzzles concerning our subliminal sense of circadian time.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Weaver, D. R. The suprachiasmatic nucleus: a 25-year retrospective. J. Biol. Rhythms 2, 100–112 ( 1998).

    Article  Google Scholar 

  2. Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 4, 697–706 (1995).

    Article  Google Scholar 

  3. Dunlap, J. C. Molecular bases for circadian clocks. Cell 2, 271–290 (1999).

    Article  Google Scholar 

  4. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee C., Bae, K. & Edery, I. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol. Cell. Biol. 19, 5316 –5325 (1999).

    CAS  Article  Google Scholar 

  6. Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94 , 83–96 (1998).

    CAS  Article  Google Scholar 

  7. Lowrey, P. L. et al. Positional syntenic cloning and functional characterisation of the mammalian circadian mutation, tau. Science 288 , 483–491 (2000).

    CAS  Article  Google Scholar 

  8. Glossop, N. R., Lyons, L. C. & Hardin, P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 766–768 (1999).

    CAS  Article  Google Scholar 

  9. Shearman L. P. et al. Interacting molecular loops in the mammalian circadian clock . Science 288, 1013–1019 (2000).

    CAS  Article  Google Scholar 

  10. Lee, K., Loros, J. J. & Dunlap, J. C. Interconnected feedback loops in the Neurospora circadian system. Science 289, 107– 110 (2000).

    CAS  Article  Google Scholar 

  11. Bae, K., Lee, C., Hardin, P. E. & Edery, I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER–TIM complex. J. Neurosci. 5, 1746–1753 ( 2000).

    Article  Google Scholar 

  12. Gotter, A. L. et al. A time-less function for mouse timeless. Nature Neurosci. 8, 755–756 ( 2000).

    Article  Google Scholar 

  13. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    CAS  Article  Google Scholar 

  14. Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor . Neuron 26, 493–504 (2000).

    CAS  Article  Google Scholar 

  15. Field, M. D. et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447 ( 2000).

    CAS  Article  Google Scholar 

  16. Monaco, L. M. et al. CREM: a master-switch in the transcriptional response to cAMP . Phil. Trans. R. Soc. Lond. B 351, 561– 567 (1996).

    Article  Google Scholar 

  17. Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57– 68 (1999).

    CAS  Article  Google Scholar 

  18. Ripperberger, J. A., Sheraman, L. P., Repert, S. M. & Schibler, U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14, 679–689 (2000).

    Google Scholar 

  19. Yamaguchi, S. & Okamura, H. Role of DBP in the circadian oscillatory mechanism. Mol. Cell. Biol. 13, 4773– 4781 (2000).

    Article  Google Scholar 

  20. Bell-Pedersen, D., Shinohara, M. L., Loros, J. J. & Dunlap, J. C. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc. Natl Acad. Sci. USA 23, 13096–13101 ( 1996).

    Article  Google Scholar 

  21. Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 7, 791– 802 (1999).

    Article  Google Scholar 

  22. Blau, J. & Young, M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell 6, 661–671 (1999).

    Article  Google Scholar 

  23. Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl Acad. Sci. USA 97, 3608–3613 (2000).

    CAS  Article  Google Scholar 

  24. Ueyama, T. et al. Suprachiasmatic nucleus: a central autonomic clock. Nature Neurosci. 2, 1051–1053 (1999).

    CAS  Article  Google Scholar 

  25. Smolensky, M. H. & Portaluppi, F. Chronopharmacology and chronotherapy of cardiovascular medications: relevance to prevention and treatment of coronary heart disease. Am. Heart J.. 137, S14–S24 (1999).

    CAS  Article  Google Scholar 

  26. Plautz, J. D., Kaneko, M., Hall, J. C. & Kay, S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635 (1997).

    CAS  Article  Google Scholar 

  27. Whitmore, D., Foulkes, N. S. & Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404, 87–91 (2000).

    CAS  Article  Google Scholar 

  28. Balsalabre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929– 937 (1998).

    Article  Google Scholar 

  29. Yagita, K. & Okamura, H. Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465, 79– 82 (2000).

    CAS  Article  Google Scholar 

  30. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682– 685 (2000).

    CAS  Article  Google Scholar 

  31. Yamaguchi, S. et al. The 5′ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr. Biol. 14, 873–876 ( 2000).

    Article  Google Scholar 

  32. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signalling. Science 289, 2344– 2347 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

per

tim

mPer

mCry

CYCLE

CLOCK

AVP

DBP

PDF

VRILLE

mBMAL1

ENCYCLOPEDIA OF LIFE SCIENCES

Circadian rhythms

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hastings, M. Circadian clockwork: two loops are better than one. Nat Rev Neurosci 1, 143–146 (2000). https://doi.org/10.1038/35039080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039080

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing