Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical genetics: ligand-based discovery of gene function

Chemical genetics is the study of gene-product function in a cellular or organismal context using exogenous ligands. In this approach, small molecules that bind directly to proteins are used to alter protein function, enabling a kinetic analysis of the in vivo consequences of these changes. Recent advances have strongly enhanced the power of exogenous ligands such that they can resemble genetic mutations in terms of their general applicability and target specificity. The growing sophistication of this approach raises the possibility of its application to any biological process.

Key Points

Chemical genetics is the study of gene product function in a cellular or organismal context using exogenous ligands.

  • The use of exogenous ligands requires three critical technologies: first, diverse chemical or peptide libraries; second, high-throughput screening; and last, protein target identification.

  • To test the effects of the thousands or millions of compounds in large chemical-libraries, rapid methods are needed to conduct many assays in parallel.

  • Target-based screens, which identify ligands for a specific protein of interest, are conceptually analogous to reverse-genetic methods, such as gene targeting in mice.

  • Ligands to a specific protein target can be used to highlight the phenotypic consequences of inhibiting or otherwise altering the target protein.

  • Phenotype-based screens test the ability of a peptide or small organic molecule to induce a specific phenotypic outcome in a cell or organism.

  • DNA microarrays are useful for identifying the protein targets of small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic and chemical-genetic approaches identify genes and proteins, respectively, that regulate biological processes.
Figure 2: Small molecules have a large range of structural complexity.
Figure 3: High-throughput cell-based assays.

References

  1. Hartwell, L. H. Twenty-five years of cell cycle genetics. Genetics 129, 975–980 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans : past, present and future. Trends Genet. 14, 410–416 (1998).

    CAS  PubMed  Google Scholar 

  3. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  4. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    CAS  PubMed  Google Scholar 

  5. Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189– 201 (1994).

    CAS  PubMed  Google Scholar 

  6. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719 –725 (1994).This study was the first to successfully use random mutagenesis, phenotype-based screening and positional cloning (that is, a forward-genetic approach) in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Reppert, S. M. & Weaver, D. R. Forward genetic approach strikes gold: cloning of a mammalian Clock gene. Cell 89, 487–490 (1997).

    CAS  PubMed  Google Scholar 

  8. Munroe, R. J. et al. Mouse mutants from chemically mutagenized embryonic stem cells . Nature Genet. 24, 318– 321 (2000).

    CAS  PubMed  Google Scholar 

  9. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl Acad. Sci. USA 93, 10614–10619 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schreiber, S. L. Chemical genetics resulting from a passion for synthetic organic chemistry . Bioorg. Med. Chem. 6, 1127– 1152 (1998).

    CAS  PubMed  Google Scholar 

  11. Stockwell, B. R., Haggarty, S. J. & Schreiber, S. L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83 ( 1999).

    CAS  PubMed  Google Scholar 

  12. Agrawal, S. & Zhao, Q. Antisense therapeutics. Curr. Opin. Chem. Biol. 2, 519–528 (1998).

    CAS  PubMed  Google Scholar 

  13. Dervan, P. B. & Burli, R. W. Sequence-specific DNA recognition by polyamides. Curr. Opin. Chem. Biol. 3, 688–693 (1999).

    CAS  PubMed  Google Scholar 

  14. Parascandola, J. The theoretical basis of Paul Ehrlich's chemotherapy. J. Hist. Med. Allied Sci. 36, 19–43 (1981).

    CAS  PubMed  Google Scholar 

  15. Schmitz, R. Friedrich Wilhelm Serturner and the discovery of morphine. Pharm. Hist. 27, 61–74 ( 1985).

    CAS  PubMed  Google Scholar 

  16. Parascandola, J. Reflections on the history of pharmacology: the 1980 Kremers award address . Pharm. Hist. 22, 131– 140 (1980).

    CAS  PubMed  Google Scholar 

  17. Ehrlich, P. Chemotherapeutics: Scientific principles, methods and results. Lancet ii, 445–451 ( 1913).

    Google Scholar 

  18. Travis, A. S. Science as a receptor of technology: Paul Ehrlich and the synthetic dyestuffs industry. Sci. Context 3, 383– 408 (1989).

    CAS  PubMed  Google Scholar 

  19. Travis, A. S. Perkin's mauve: ancestor of the organic chemical industry. Technol. Cult. 31, 51–82 ( 1990).

    Google Scholar 

  20. Popescu, A. & Doyle, R. J. The Gram stain after more than a century. Biotech. Histochem. 71, 145– 151 (1996).

    CAS  PubMed  Google Scholar 

  21. McTavish, J. R. Aspirin in Germany: the pharmaceutical industry and the pharmaceutical profession . Pharm. Hist. 29, 103– 115 (1987).

    CAS  PubMed  Google Scholar 

  22. Kaufman, G. B. & Priebe, P. M. The discovery of saccharin: a centennial retrospect. Ambix 25, 191–207 (1978).

    Google Scholar 

  23. Geyer, C. R., Colman-Lerner, A. & Brent, R. 'Mutagenesis' by peptide aptamers identifies genetic network members and pathway connections. Proc. Natl Acad. Sci. USA 96, 8567–8572 ( 1999).This is the first successful use of peptide aptamers in a forward chemical-genetic screen.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Colas, P. Combinatorial protein reagents to manipulate protein function. Curr. Opin. Chem. Biol. 4, 54–59 (2000).

    CAS  PubMed  Google Scholar 

  25. Dolle, R. E. Comprehensive survey of chemical libraries yielding enzyme inhibitors, receptor agonists and antagonists, and other biologically active agents: 1992 through 1997. Mol. Diversity 3, 199– 233 (1998).

    CAS  Google Scholar 

  26. Dolle, R. E. & Nelson, K. H., Jr Comprehensive survey of combinatorial library synthesis: 1998. J. Comb. Chem. 1, 235–282 ( 1999).

    CAS  PubMed  Google Scholar 

  27. Merrifield, B. Concept and early development of solid-phase peptide synthesis. Methods Enzymol. 289, 3–13 (1997).

    CAS  PubMed  Google Scholar 

  28. Schneider, C. H., Rolli, H. & Blaser, K. Liquid–liquid extraction in peptide synthesis. Int. J. Pept. Protein Res. 15, 411– 419 (1980).

    CAS  PubMed  Google Scholar 

  29. Lam, K. S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82– 84 (1991).

    CAS  PubMed  Google Scholar 

  30. Furka, A., Sebestyen, F., Asgedom, M. & Dido, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 37, 487– 493 (1991).References 29 and 30 describe split-pool synthesis, a revolutionary method for synthesizing very large chemical libraries.

    CAS  PubMed  Google Scholar 

  31. Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis . Science 251, 767–773 (1991).

    CAS  PubMed  Google Scholar 

  32. Scott, J. K. & Smith, G. P. Searching for peptide ligands with an epitope library. Science 249, 386– 390 (1990).

    CAS  PubMed  Google Scholar 

  33. Colas, P. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548 –550 (1996).

    CAS  PubMed  Google Scholar 

  34. Lien, E. J. & Wang, P. H. Lipophilicity, molecular weight, and drug action: reexamination of parabolic and bilinear models. J. Pharmacol. Sci. 69, 648–650 (1980).

    CAS  Google Scholar 

  35. Tan, D. S., Foley, M. A., Stockwell, B. R., Shair, M. D. & Schreiber, S. L. Synthesis and preliminary evaluation of a library of polycyclic small molecules for use in chemical genetic assays . J. Am. Chem. Soc. 121, 9073– 9087 (1999).

    CAS  Google Scholar 

  36. Sullivan, R. W. et al. 2-Chloro-4-(trifluoromethyl)pyrimidine-5-N-(3′,5′-bis(trifluoromethyl)phenyl)-carboxamide: a potent inhibitor of NF-κB- and AP-1-mediated gene expression identified using solution-phase combinatorial chemistry. J. Med. Chem. 41, 413–419 (1998).

    CAS  PubMed  Google Scholar 

  37. An, H., Haly, B. D. & Cook, P. D. Discovery of novel pyridinopolyamines with potent antimicrobial activity: deconvolution of mixtures synthesized by solution-phase combinatorial chemistry. J. Med. Chem. 41, 706– 716 (1998).

    CAS  PubMed  Google Scholar 

  38. Boger, D. L., Chai, W. & Jin, Q. Multistep convergent solution-phase combinatorial synthesis and deletion synthesis deconvolution. J. Am. Chem. Soc. 120, 7220 –7225 (1998).

    CAS  Google Scholar 

  39. Hung, D. T., Jamison, T. F. & Schreiber, S. L. Understanding and controlling the cell cycle with natural products. Chem. Biol. 3, 623– 640 (1996).

    CAS  PubMed  Google Scholar 

  40. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products . Chem. Biol. 5, 245–249 (1998) [ PubMed].The authors describe a powerful method for discovering new natural products using bacterial genetics.

    Google Scholar 

  41. Tan, D. S., Foley, M. A., Shair, M. D. & Schreiber, S. L. Stereoselective synthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell-based assays. J. Am. Chem. Soc. 120, 8565–8566 (1998). This is the first demonstrated use of combinatorial chemistry to synthesize a large library of structurally complex small molecules.

    CAS  Google Scholar 

  42. Wang, J. & Ramnarayan, K. Toward designing drug-like libraries: a novel computational approach for prediction of drug feasibility of compounds . J. Comb. Chem. 1, 524– 533 (1999).

    CAS  PubMed  Google Scholar 

  43. Gellman, S. H. Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180 (1998).

    CAS  Google Scholar 

  44. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery . Science 287, 1964–1969 (2000).

    CAS  PubMed  Google Scholar 

  45. Vaino, A. R. & Janda, K. D. Euclidean shape-encoded combinatorial chemical libraries. Proc. Natl Acad. Sci. USA 97, 7692–7696 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sundberg, S. A. High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr. Opin. Biotechnol. 11, 47–53 (2000).

    CAS  PubMed  Google Scholar 

  47. Borchardt, A., Liberles, S. D., Biggar, S. R., Crabtree, G. R. & Schreiber, S. L. Small molecule-dependent genetic selection in stochastic nanodroplets as a means of detecting protein–ligand interactions on a large scale. Chem. Biol. 4, 961–968 (1997).

    CAS  PubMed  Google Scholar 

  48. You, A. J., Jackman, R. J., Whitesides, G. M. & Schreiber, S. L. A miniaturized arrayed assay format for detecting small molecule–protein interactions in cells. Chem. Biol. 4, 969 –975 (1997).

    CAS  PubMed  Google Scholar 

  49. Mere, L. et al. Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug Discov. Today 4, 363–369 (1999).

    CAS  PubMed  Google Scholar 

  50. Wetterau, J. R. et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751– 754 (1998).

    CAS  PubMed  Google Scholar 

  51. Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    CAS  PubMed  Google Scholar 

  52. Sebolt-Leopold, J. S. et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med. 5, 810 –816 (1999).

    CAS  PubMed  Google Scholar 

  53. Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129–2133 (1999).

    CAS  PubMed  Google Scholar 

  54. Apletalina, E., Appel, J., Lamango, N. S., Houghten, R. A. & Lindberg, I. Identification of inhibitors of prohormone convertases 1 and 2 using a peptide combinatorial library. J. Biol. Chem. 273, 26589–26595 (1998).

    CAS  PubMed  Google Scholar 

  55. Tian, S. S. et al. A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science 281, 257– 259 (1998).

    CAS  PubMed  Google Scholar 

  56. Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284, 974– 977 (1999).

    CAS  PubMed  Google Scholar 

  57. Chen, J. K., Lane, W. S., Brauer, A. W., Tanaka, A. & Schreiber, S. L. Biased combinatorial libraries: Novel ligands for the SH3 domain of phosphatidylinositol 3-kinase. J. Am. Chem. Soc. 115, 12591–12592 (1993).

    CAS  Google Scholar 

  58. Bottger, V. et al. Identification of novel mdm2 binding peptides by phage display . Oncogene 13, 2141–2147 (1996).

    CAS  PubMed  Google Scholar 

  59. Norris, J. D. et al. Peptide antagonists of the human estrogen receptor. Science 285, 744–746 ( 1999).

    CAS  PubMed  Google Scholar 

  60. Rohrer, S. P. et al. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282, 737–740 ( 1998).These authors were the first to apply reverse chemical-genetics to a protein family. They identify specific small molecule partners of each member of a family of somatostatin cell-surface receptors.

    CAS  PubMed  Google Scholar 

  61. Norman, T. C. et al. Genetic selection of peptide inhibitors of biological pathways . Science 285, 591–595 (1999).

    CAS  PubMed  Google Scholar 

  62. Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    CAS  PubMed  Google Scholar 

  63. Rosania, G. R. et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nature Biotechnol. 18, 304– 308 (2000). [ PubMed]

    CAS  Google Scholar 

  64. Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444– 447 (2000).

    CAS  PubMed  Google Scholar 

  65. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    CAS  PubMed  Google Scholar 

  66. Stockwell, B. R., Hardwick, J. S., Tong, J. K. & Schreiber, S. L. Chemical genetic and genomic approaches reveal a role for copper in specific gene activation. J. Am. Chem. Soc. 121, 10662–10663 (1999).

    CAS  Google Scholar 

  67. Boland, M. V., Markey, M. K. & Murphy, R. F. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33, 366–375 ( 1998).

    CAS  PubMed  Google Scholar 

  68. Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces I. Fermentation, isolation, and physico-chemical and biological characteristics . J. Antibiot. (Tokyo) XL, 1249– 1255 (1987).

    Google Scholar 

  69. Kino, T. et al. FK-506, A novel immunosupressant isolated from a Streptomyces II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. (Tokyo) XL, 1256–1265 (1987).

    Google Scholar 

  70. Haggarty, S. J. et al. Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis . Chem. Biol. 7, 275–286 (2000).

    CAS  PubMed  Google Scholar 

  71. Roberge, M. et al. High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res. 58, 5701–5706 ( 1998).

    CAS  PubMed  Google Scholar 

  72. Caponigro, G. et al. Transdominant genetic analysis of a growth control pathway . Proc. Natl Acad. Sci. USA 95, 7508– 7513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamaguchi, K. et al. 4-Phenylthiazole derivatives inhibit IL-6 secretion in osteoblastic cells and suppress bone weight loss in ovariectomized mice. Bioorg. Med. Chem. Lett. 9, 957–960 (1999).

    CAS  PubMed  Google Scholar 

  74. Lu, X. P. et al. Novel retinoid-related molecules as apoptosis inducers and effective inhibitors of human lung cancer cells in vivo. Nature Med. 3, 686–690 ( 1997).

    CAS  PubMed  Google Scholar 

  75. Rice, J. W., Davis, J. E., Crowl, R. M. & Johnston, P. A. Development of a high volume screen to identify inhibitors of endothelial cell activation. Anal. Biochem. 241, 254 –259 (1996).

    CAS  PubMed  Google Scholar 

  76. Goldstein, A. The interactions of drugs and plasma proteins. Pharmacol. Rev. 1, 102–163 ( 1949).

    Google Scholar 

  77. Karlin, A. & Winnik, M. Reduction and specific alkylation of the receptor for acetycholine. Proc. Natl Acad. Sci. USA 60, 668–674 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Raftery, M. A., Hunkapiller, M. W., Strader, C. D. & Hood, L. E. Acetylcholine receptor: complex of homologous subunits. Science 208, 1454–1457 ( 1980).

    CAS  PubMed  Google Scholar 

  79. Noda, M. et al. Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797 (1982).

    CAS  PubMed  Google Scholar 

  80. Kornel, L. On the effects and the mechanism of action of corticosteroids in normal and neoplastic target tissues: findings and hypotheses. Acta Endocrinol. Suppl. (Copenh.) 178, 1–45 (1973).

    CAS  Google Scholar 

  81. Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).

    CAS  PubMed  Google Scholar 

  82. Brown, E. J. et al. & Schreiber, S. L. A mammalian protein targeted by G1-arresting rapamycin–receptor complex . Nature 369, 756–758 (1994).

    CAS  PubMed  Google Scholar 

  83. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).The authors demonstrate the power of affinity chromatography and biochemical purification to identify the protein target of the natural product trapoxin.

    CAS  PubMed  Google Scholar 

  84. Sin, N. et al. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase MetAP-2. Proc. Natl Acad. Sci. USA 94, 6099–6103 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwon, H. J., Owa, T., Hassig, C. A., Shimada, J. & Schreiber, S. L. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl Acad. Sci. USA 95, 3356–3361 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    CAS  PubMed  Google Scholar 

  87. Sche, P. P., McKenzie, K. M., White, J. D. & Austin, D. J. Display cloning: functional identification of natural product receptors using cDNA-phage display. Chem. Biol. 6, 707– 716 (1999).

    CAS  PubMed  Google Scholar 

  88. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles . Cell 102, 109–126 (2000).

    CAS  PubMed  Google Scholar 

  89. Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency . Nature Genet. 21, 278– 283 (1999).

    CAS  PubMed  Google Scholar 

  90. Winzeler, E. A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 ( 1998).

    CAS  PubMed  Google Scholar 

  91. Colas, P. & Brent, R. The impact of two-hybrid and related methods on biotechnology. Trends Biotechnol. 16, 355–363 (1998).

    CAS  PubMed  Google Scholar 

  92. Licitra, E. J. & Liu, J. O. A three-hybrid system for detecting small ligand–protein receptor interactions. Proc. Natl Acad. Sci. USA 93, 12817– 12821 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4 , 1293–1301 (1998). The authors demonstrate the utility of expression profiling for identifying the target(s) of a small molecule.

    CAS  PubMed  Google Scholar 

  94. Giroux, S. et al. Embryonic death of Mek1–deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta . Curr. Biol. 9, 369–372 (1999).

    CAS  PubMed  Google Scholar 

  95. Blum, J. H., Dove, S. L., Hochschild, A. & Mekalanos, J. J. Isolation of peptide aptamers that inhibit intracellular processes. Proc. Natl Acad. Sci. USA 97, 2241– 2246 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Adey, N. B. & Kay, B. K. Identification of calmodulin-binding peptide consensus sequences from a phage-displayed random peptide library . Gene 169, 133–134 (1996).

    CAS  PubMed  Google Scholar 

  97. Wrighton, N. C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin . Science 273, 458–463 (1996).

    CAS  PubMed  Google Scholar 

  98. Wrighton, N. C., Barrett, R. W. & Dower, W. J. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276, 1696–1699 (1997).

    PubMed  Google Scholar 

  99. Yayon, A. et al. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc. Natl Acad. Sci. USA 90, 10643– 10647 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yanofsky, S. D. et al. High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries. Proc. Natl Acad. Sci. USA 93, 7381–7386 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Maly, D. J., Choong, I. C. & Ellman, J. A. Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc. Natl Acad. Sci. USA 97, 2419–2924 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Richter, L. S. & Moos, W. H. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J. Med. Chem. 37, 2678–2685 (1994).

    Google Scholar 

  103. Liang, R. et al. Parallel synthesis and screening of a solid phase carbohydrate library. Science 274, 1520– 1522 (1996).

    CAS  PubMed  Google Scholar 

  104. Szardenings, A. K. et al. Identification of highly selective inhibitors of collagenase-1 from combinatorial libraries of diketopiperazines. J. Med. Chem. 42, 1348–1357 ( 1999).

    CAS  PubMed  Google Scholar 

  105. Bunin, B. A. & Ellman, J. A. A general and expedient method for the solid phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc. 114, 10997–10998 (1992).

    CAS  Google Scholar 

  106. Peisach, E. et al. Interaction of a peptidomimetic aminimide inhibitor with elastase . Science 269, 66–69 (1995).

    CAS  PubMed  Google Scholar 

  107. Bailey, N. et al. A convenient procedure for the solution phase preparation of 2- aminothiazole combinatorial libraries. Bioorg. Med. Chem. Lett. 6, 1409–1414 ( 1996).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks J. M. Scharf and M. S. Stockwell for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

P53

MEK1

somatostatin

somatostatin receptor subtype-2

somatostatin receptor subtype-5

plasminogen activator inhibitor type 1

interleukin-2

interleukin-6

cyclosporin A

ERG2

CBK1

HIS3

FURTHER INFORMATION

The Gram stain

Paul Ehrlich

Animations of reporter-gene assays and antibody-based cellular immunoassays

Saccharomyces genome deletion project

Field lab page

Stockwell lab page

Glossary

FORWARD GENETICS

Genetic analysis that proceeds from phenotype to genotype through positional cloning or a candidate-gene approach.

TARGET IDENTIFICATION

The process of finding cellular macromolecules that bind to a small molecule or peptide.

SMALL ORGANIC MOLECULE (also called small molecule)

Carbon-containing compounds that usually have a molecular weight of less than 2,000 g mol−1.

STEREOCENTRE

A carbon atom that bears four distinct functional groups.

PEPTIDE APTAMER

A short oligomer of amino acids, often fused to a protein scaffold.

LIBRARY

A large collection of peptides, small molecules or other reagents.

SOLID-PHASE SYNTHESIS

Chemical synthesis method using a solid support, such as a plastic bead.

COMBINATORIAL CHEMISTRY

The synthesis of numerous organic compounds by combining variations of each of the building blocks that comprise the compounds.

REVERSE GENETICS

Genetic analysis that proceeds from genotype to phenotype through gene-manipulation techniques.

COMBINATORIAL LIBRARY

A collection of small molecules synthesized by combinatorial chemistry.

ALLELIC SCANNING

The rapid detection of DNA sequence variations between two strains by analysing total genomic DNA on high-density DNA microarrays.

EXPRESSION PROFILING

The use of DNA microarrays to determine the expression level of thousands of genes simultaneously.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockwell, B. Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1, 116–125 (2000). https://doi.org/10.1038/35038557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing